The estimation of actual evapotranspiration of irrigated agricultural and Gardens in Nahavand plain using algorithm SEBAL

Document Type : Research/Original/Regular Article

Authors

1 Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran

2 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran

3 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

4 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran

Abstract

Introduction

Evapotranspiration that includes evaporation from the soil surface and transpiration from vegetation, is one of the most important factors of water loss. Also, it is one of the most effective components of the water balance in a catchment in arid and semi-arid regions of the world. Therefore, it is an important physical parameter for water resource management and determining the plant water requirement in the agricultural sector. so far, many experimental methods have been proposed to calculate evapotranspiration, but, they are only suitable at the local scale and cannot be generalized to large areas due to regional dynamics and changes. whereas the accurate estimation of it is also very difficult and expensive, Therefore, in the present study, calculated the amount of evapotranspiration in the irrigated agricultural sector by using of landsat 8 satellite images and Surface Energy Balance Algorithm (SEBAL) in Nahavand Plain. in SEBAL algorithm by estimating all energy components on the earth's surface, including net radiation flux, soil heat flux, and sensible heat flux and using the energy balance equation, evapotranspiration is calculated. Remote sensing also has the ability to show evapotranspiration spatial distribution in addition to estimating the amount of its, because, it is the only technology that extracts factors such as surface temperature, albedo coefficient and plant index in a way compatible with the environment and is also economically affordable.

Materials and Methods

in this research, in order to estimate daily actual evapotranspiration of the irrigated agricultural and gardens of Nahavand Plain, extracted irrigated agricultural land use map by using of Sentinel 2 satellite images, Then, by using of Landsat 8 satellite images (13 images, from 13 April to 22 October during the growth period of the irrigated crops) and Surface Energy Balance Algorithm (SEBAL), evapotranspiration maps were obtained during the irrigated crops growth period in 2021. These Landsat 8satellite images are obtained by the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) onboard the satellites and are widely used for water resource applications. The OLI sensor has 9 bands and the TIRS has two bands (10th and 11th are the thermal bands). Landsat images are at intervals of 16-days with a spatial resolution of 30 m. In all images, the imaging time was 7:21. Then, due to FAO- Penman monteith method is one of the most important and reliable reference methods in evapotranspiration calculations, in this research, this method was used as a basis for evaluation and comparison. Finally, in order to evaluate the efficiency of SEBAL method in estimating the actual evapotranspiration of irrigated crops and gardens in Nahavand Plain used RMSE function (Root Mean Squares of Errors).

Results and Discussion

According to the results of the SEBAL algorithm, the highest mean of actual evapotranspiration was related to images 2021.09.04 and 2021.08.19 which fall in the middle of the growing period of irrigated crops. In addition, the surface albedo is noted to be relatively low for these days with the high NDVI values indicating high absorption of radiation by the vegetation during this period. Net solar radiation is directly contingent upon the incoming longwave and shortwave radiations, both of which directly influence the surface temperature. Therefore, areas with higher surface temperatures have higher net solar radiation. The net radiation flux has a direct relationship with NDVI, Greenness, and wetness parameters and is inversely related to albedo, Brightness, and Ts. The vegetative moisture and sensible heat flux are higher on days with high NDVI. Higher NDVI values are an indication of an increase in vegetation greenness, therefore essentially an increase in evapotranspiration is expected to be observed. The lowest mean of actual evapotranspiration is related to the northeast of the case study; due to lack of sufficient surface and ground water resources and consequently the reduction of agricultural lands in this region. Finally, in order to investigate the accuracy of SEBAL method in calculating evapotranspiration, compared the results of SEBAL method with the results of FAO- Penman monteith method. The results of this comparison showed that the SEBAL method with RMSE 0.82 has appropriate efficiency for estimating evapotranspiration.

Conclusion

Due to an increase in population and shortage of water resources, especially in the agricultural sector, researchers are looking for ways to better manage the available water resources. Evapotranspiration rate is one of the most important components of the global hydrologic cycle and has a significant influence on energy balance and climate. the using of indirect methods such as remote sensing can be an important step for estimating the water need of agricultural products, planning and management the country, s water resources. Therefore, according to the position of Nahavand city as the agricultural hub of Hamedan province, in this study, the actual evapotranspiration of the irrigated agricultural land use using of landsat 8 satellite images and SEBAL Algorithm was investigated in this area. According to the results of the SEBAL algorithm, the highest mean of actual evapotranspiration in all of the investigated images is related to the southeast and center of the studied area. that the reason of this matter is location of this area in the main branch of the Gamasiab River and focused the irrigated agricultural and gardens in this area. The final results of this research indicated high precision of SEBAL algorithm in estimating evapotranspiration. Thus, the high accuracy and low error indicate that the SEBAL method could be aptly used to estimate evapotranspiration on a regional scale, in the respective time range. Also, the results obtained from the SEBAL method assisted in understanding the spatial and temporal changes in different stages of plant growth.

Keywords

Main Subjects


منابع
ثنایی‌نژاد، سید حسین، نوری، سمیرا و هاشمی نیا، سید مجید (1390). برآورد تبخیر _ تعرق واقعی با استفاده از تصاویر ماهواره‌ای در منطقه مشهد. آب و خاک (علوم و صنایع کشاورزی)، 25(3)، 547-540. 10.22067/jsw.v0i0.9641:doi
 زمان‌ثانی، الناز، خورانی، اسداله، صادقی لاری، عدنان و سدیدی، جواد (1396). ارزیابی برآورد تبخیر _ تعرق گیاه گندم با استفاده از الگوریتم سبال (مطالعه موردی: ایستگاه تحقیقات کشاورزی شهرستان حاجی‌آباد). پژوهش­های جغرافیای طبیعی، 49(4)، 681-667. doi: 10.22059/jphgr.2018.227348.1007012
سلطانی، اسعد، میر لطیفی، سید مجید و دهقانی سانیج، حسین (1391). برآورد تبخیر _ تعرق مرجع با استفاده از داده­های محدوده هواشناسی در شرایط اقلیمی مختلف. آب و خاک (علوم و صنایع کشاورزی)، 26(1)، 149-139. 10.22067/jsw.v0i0.13637:doi
صحراگرد، ستاره، ناصری، عبدعلی، الباجی، محمد و کابلی زاده، مصطفی (1399). برآورد تبخیر _ تعرق واقعی با الگوریتم توازن انرژی سطحی سبال و تصاویر تلفیق شده لندست 8 و سنتینل 2 (مطالعه موردی: کشت و صنعت نیشکر میرزا کوچک خان). آبیاری و زهکشی ایران، 14(1)، 167-156.  dor: 20.1001.1.20087942.1399.14.1.14.7
کریمی طرقبه، حسین، کردوانی، پرویز و مهدوی، مسعود (1397). برآورد آب مصرفی کشاورزی دهستان سودلانه با استفاده از الگوریتم برآورد تبخیر - تعرق SEBAL. حفاظت منابع آب و خاک، 8(2)، 120-105. https://civilica.com/doc/1297368
گل ریحان، جلال، امینی‌نیا، کریم و ولیزاده کامران، خلیل (1402). برآورد تبخیر _ تعرق واقعی گیاهان مرتعی با الگوریتم SEBAL (مطالعه موردی: شهرستان اهر). توسعه جغرافیا و توسعه ناحیه­ای، 44(3)، 28-1. 10.22067/jgrd.2023.82588.1291:doi
نوری، حمید و فرامرزی، محمد (1396). بررسی تبخیر _ تعرق واقعی در کاربری­های مختلف اراضی کوهستانی با استفاده از الگوریتم سبال و ترکیب تصاویر ماهواره­ای MODIS و Landsat 8. جفرافیا و برنامه­ریزی محیطی، 66(2)، 38-56.  10.22108/GEP.2017.97932.0:doi
 
References
Ajjur, S.B., & Al-Ghamdi, S.G. (2021). Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Climatic Change, 166, 28. doi: 10.1007/s10584-021-03122-z.
Al Zayed, I. S., Elagib, N. A., Ribbe, L., & Heinrich, J. (2016). Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agricultural Water Management, 177, 66-76. doi: 10.1016/j.agwat.2016.06.027.
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. doi: 10.1061/(ASCE)0733-9437.
Allen, R., Waters, R., Tasumi, M., Trezza, R., & Bastianssen, W. (2002). SEBAL, Surface Energy Balance Algorithms for Land Idaho Implementation Advanced Training and User's manual. Version 1.0: 90 p.
Allen, R.G., Pereira, L., Raes, D., & Smith, M. )1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 26-40.
Asadi, M., & Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators. Journal of Applied Researches in Geographical Sciences, 20(56), 159-175. doi: 10.29252/jgs.20.56.159.
Asadi, M., & Valizadeh, K. (2022). Comparison of SEBAL, METRIC, and ALARM algorithms for estimating actual evapotranspiration of wheat crop. Theoretical and Applied Climatology, 149(1-2), 327-337. doi: 10.1007/s00704-022-04026-3.
Asadi, M., & Valizadeh, K. (2023). Estimating selected cultivated crop water requirement based surface energy balance algorithm. Arabian Journal of Geosciences, 16, 298. doi: 10.1007/s12517-023-11386-1.
Bastiaanssen, W. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1), 87-100. doi:10.1016/S0022-1694(99)00202-4.
Bastiaanssen, W.G.M. (2002). SEBAL (Surface Energy Balance Algorithms for Land). Advanced Training and User Manual, 12-76.
Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., & Allen, R.G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field condition. Journal of Irrigation and Drainage Engineering, 131(1), 85-93. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85).
Costa, J. D. O., Coelho, R. D., Wolff, W., José, J. V., Folegatti, M. V., & Ferraz, S. F. D. B. (2019). Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Scientia Agricola, 76(2), 93-101. doi: 10.1590/1678-992X-2017-0158.
Du, J., Song, K., Wang, Z., Zhang, B., & Liu, D. (2013). Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chinese Geographical Science, 23, 73-91. doi:10.1007/s11769-013-0587-8.
Genanu, M., Alamirew, T., Senay, G., & Gebremichael, M. (2017). Remote sensing based estimation of evapo-transpiration using selected algorithms: The case of Wonji Shoa Sugar Cane Estate. Ethiopia, 2-14. doi:10.20944/preprints201608.0098.v1.
Golreyhan, J., Amininia, K., & Valizadeh Kamran, K. (2023). Estimation of actual evapotranspiration of pasture plants using SEBAL algorithm (Research-case study: Ahar County). Journal of Geography and Regional Development, 21(3), 169-197. doi: 10.22067/jgrd.2023.82588.1291 [In Persian]
Huntingford, C., Verhoef, A., & Stewart, J. (2000). Dual versus single source models for estimating surface temperature of African savannah. Hydrology and Earth System Sciences Discussions, 4(1), 185-191. doi: 10.5194/hess-4-185-2000.
Karimi Torghabeh, H., Kardavani, P., and Mahdavi, M. (2018). Estimation of water consumption in agricultural sector of Soudlaneh Vill using estimation algorithm of evapotranspiration. Journal of Water and Soil Resources Conservation, 2(8), 105-120. https://civilica.com/doc/1297368
Kustas, W.P., & Norman, J.M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94, 13-29. doi:10.1016/S0168-1923(99)00005-2.
Ma, Y., Sun, S., Li, C., Zhao, J., Li, Z. And Jia, C. (2023). Estimation of regional actual evapotranspiration based on the improved SEBAL model. Journal of Hydrology. 619, 129283. doi: 10.1016/j.jhydrol.2023.129283.
Mikaeili, O., & Shourian, M. (2024). Improving Evapotranspiration Estimation in SWAT-Based Hydrologic Simulation through Data Assimilation in the SEBAL Algorithm. Water Resources Management, 1-22. doi:10.1007/s11269-024-03854-4.
Nishida, K., Nemani, R.R., Running, S.W., & Glassy, J.M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research, 108(D9), 4270. doi:10.1029/2002JD002062.
Norman, J.M., Kustas, W.P., & Humes, K.S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3), 263-293. doi:10.1016/0168-1923(95)02265-Y.
Nouri, H., & Faramarzi, M. (2017). Investigating actual evapotranspiration in different land uses in mountainous areas using SEBAL algorithm and a combination of MODIS and Landsat8 satellite images. Geography and Environmental Planning, 28(2), 39-56. doi: 10.22108/gep.2017.97932.0 [In Persian]
Owaneh, O. M., & Suleiman, A. A. (2018). Comparison of the Performance of ALARM and SEBAL in Estimating the Actual Daily ET from Satellite Data. Journal of Irrigation and Drainage Engineering, 144(9), 04018024. doi:10.1061/(ASCE)IR.1943-4774.0001335.
Paul, G., Gowda, P. H., Vara Prasad, P. V., Howell, T. A., Aiken, R. M.,  & Neale, C. M. U. (2014). Investigating the influence of roughness length for heat transport (ZOH) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. Journal of Hydrology, 509, 231-244. doi:10.1016/j.jhydrol.2013.11.040.
Rao Peddinti, S., Nicolas, F., Raij-Hoffman, L. and Kisekka, I. (2025). Evapotranspiration estimation using high-resolution aerial imagery and pySEBAL for processing tomatoes. Irrigation Science. 43, 51-64. doi:10.1007/s00271-024-00943-5.
Rawat, K.S., Bala, A., Singh, S. K., & Pal, R. K. (2017). Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agricultural Water Management, 187, 200-209. doi:10.1016/j.agwat.2017.03.015.
Sahragard, S., Naseri, A., Albaji, M., & Kabolizade, M. (2020). Estimation of actual evapotranspiration using SEBAL surface energy balance algorithm and fusion of Landsat8 and Sentinel2 satellite images (Case Study: Mirza Kouchak Khan Agroindustrial Company). Iranian Journal of Irrigation & Drainage, 14(1), 156-167. [In Persian]
Sanaei-Nejad, S., Noori, S., & Hashemi nia, M. (2011). Estimation of evapotranspiration using satellite image data in Mashhad area. Water and Soil, 25(3), 540-547. doi: 10.22067/jsw.v0i0.9641 [In Persian]
Sánchez, J. M., Scavone, G., Caselles, V., Valor, E., Copertino, V. A., & Telesca, V. (2008). Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. doi:10.1016/j.jhydrol.2007.11.041
Sanchez, J., Kustas, W., Caselles, V., & Anderson, M. (2008). Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sensing of Environment, 112, 1130-1143. doi:10.1016/j.rse.2007.07.018.
Santos, C., Bezerra, B., Silva, B., & Neale, C. (2009). Assessment of daily actual evapotranspiration estimated by remote sensing algorithms. Anais XIV Simposio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 427-434. https://api.Semanticscholar.org/Corpus ID: 174779053.
Saxena, D., Choudhary, M., & Sharma, G. (2024). Spatiotemporal trends and evapotranspiration estimation using an improvised SEBAL convergence method for the semi-arid region of western Rajasthan, India. AQUA           Water Infrastructure, Ecosystems and Society, 73(3), 407-423. doi: 10.2166/aqua.2024.220.
 Shamloo, N., Sattari, M. T., Apaydin, H., Valizadeh Kamran, Kh., & Prasad, R. (2021). Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods. International Journal of Digital Earth, 1-22. doi: 10.1080/17538947.2021.1962996.
Soltani, A., Mirlatifi, S., & Dehghanisanij, H. (2012). Water and Soil, 26(1), 139-149. doi: 10.22067/jsw.v0i0.13637 [In Persian]
Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., & Liu, Z. (2011). Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling, 54, 1086–1092. doi:10.1016/j.mcm.2010.11.039. 
Wagle, P., Bhattarai, N., Gowda, P., & Kakani, V. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192-203. doi:10.1016/j.isprsjprs.2017.03.022. 
 Yang, Y., Zhou, X., Yang, Y., Bi, S., Yang, X., & Li Liu, D. (2018). Evaluating water-saving efficiency of plastic mulching in Northwest China using remote sensing and SEBAL. Agricultural Water Management, 209, 240-248. doi:10.1016/j.agwat.2018.07.011.
Yibrie, E.A., Boteva, S., Zhang, L., & Elhag, M. (2024). Estimation of evapotranspiration based on METRIC and SEBAL model using remote sensing, near Al-Jouf, Saudi Arabia. Desalination and Water Treatment, 290, 94-103. doi: 10.5004/dwt.2023.29478.
Zamansani, E., Khoorani, A., Sadeghi-e-lari, A., & Sadidi, J. (2017). Evaluation of evapotranspiration of wheat using SEBAL algorithm (Case study: Agricultural Research Station of Haji Abad). Physical Geography Research, 49(4), 667-681. doi: 10.22059/jphgr.2018.227348.1007012 [In Persian]
Zhou, X., Bi, S., Yang, Y., Tian, F., & Ren, D. (2014). Comparison of ET estimations by the three temperature model, SEBAL model and eddy covariance observations. Journal of hydrology, 519, 769-776. doi:10.1016/j.jhydrol.2014.08.004.
Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., & Morgan, K.T. (2009). Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu.