Assessing spatial pattern of irrigation hydromodule under different crop patterns in northwestern Iran

Document Type : Research/Original/Regular Article

Authors

1 Ph.D Student., Department of Water Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor/Water Engineering Dept., Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

3 Associate Professor/Department of Natural Resources, Water Management Research Center, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

Abstract

Abstract

Introduction

As the population continues to grow, the significance of boosting food production becomes increasingly evident. Consequently, it is imperative to find solutions to address water limitations and enhance food production in regions facing water scarcity. In this context, it is proposed to implement strategies that involve expanding cultivated areas and optimizing the utilization of available water resources, particularly in scenarios where irrigation is restricted. Successful water engineering projects necessitate precise estimation of plants' water requirements across various regions. The goal is to maximize the efficiency of water usage per unit volume to ensure optimal agricultural output. This study aims to explore fluctuations in the water requirements and hydromodule of crops within different cultivation patterns in selected regions of northwest Iran, in response to climatic variables.



Materials and Methods

The objective of this study is to evaluate the variations in plant water needs in cultivation patterns across different regions in northwest Iran, taking into account climatic parameters. Initially, meteorological data from stations in Tabriz, Kalibar, Parsabad, Germi, and Bukan were collected from the national meteorological organization.

Cultivation pattern of agricultural plants in the investigated stations was extracted from the Jihad Agricultural Organization of the respective province. Considering the vastness of the studied areas and the impossibility of detailed soil investigation, the soil of the areas was considered medium. According to Ministry of Energy researches, the irrigation efficiency for all the studied areas averagely was considered to 60%.

Subsequently, utilizing CROPWAT 8.0 software based on the FAO56 equation, factors such as evapotranspiration of grass (used as a reference plant), solar radiation, and effective rainfall were determined for the selected stations. The hydromodule, representing water requirements, was then calculated monthly for the desired cultivation patterns in the respective areas. Finally, employing the Weibull transformation coefficient, the irrigation hydromodule with various return periods was derived for the study region.



Results and Discussion

The results indicated that the average potential evapotranspiration of grass, serving as the reference plant, was calculated as 4.12, 3.03, 2.86, 3.32, and 3.86 mm per day for the Tabriz, Kalibar, Parsabad, Germi, and Bukan stations, respectively. Furthermore, the average irrigation hydromodule for these stations was determined as 0.73, 0.35, 0.6, 0.7, and 0.62 liters per second per hectare, respectively. Utilizing the linear variation function, the average irrigation hydromodule for return periods of 2, 5, 10, 25, 50, 100, and 200 years for the aforementioned stations were obtained as 0.813, 0.552, 0.707, and 0.721 liters per second per hectare, respectively. Similarly, using the exponential function, the corresponding values were extracted as 0.818, 0.632, 0.719, 1, and 0.73 liters per second per hectare, respectively. Specifically, for the Tabriz, Kalibar, Parsabad, Germi, and Bukan stations, the irrigation hydromodule values with a return period of 2 years, employing the linear function, were calculated as 0.742, 0.439, 0.622, 0.821, and 0.67 liters per second per hectare, and with the exponential function, they were determined as 0.74, 0.444, 0.618, 0.829, and 0.672 liters per second per hectare, respectively. Additionally, for these stations, with a return period of 200 years, using the linear function, the calculated irrigation hydromodule values were 0.851, 0.613, 0.754, 1.015, and 0.748 liters per second per hectare, while employing the exponential function, they were determined as 0.862, 0.749, 0.777, 1.1, and 0.762 liters per second per hectare, respectively.



Conclusion

The irrigation hydromodule values in the Tabriz station increased by 0.851 liters per second per hectare, which is equivalent to a 10.88 percent increase compared to the average. Similarly, in the Kalibar, Parsabad, Germi, and Bukan stations, the increases were 0.613, 0.754, 1.01, and 0.748 liters per second per hectare, respectively, representing increments of 8.44, 13.17, 38, 19.7, and 7.78 percent compared to the average. Utilizing the exponential changes function, when the return period was adjusted from 2 years to 200 years and the probability of occurrence was reduced, the irrigation hydromodule increased by 0.862 liters per second per hectare in the Tabriz station, which corresponds to a 12.23 percent increase relative to the average. Similarly, in the Kalibar, Parsabad, Germi, and Bukan stations, the increases were 0.749, 0.777, 1.1, and 0.762 liters per second per hectare, respectively, representing rises of 30.5, 15.82, 09, 27.04, and 9.04 percent compared to the average. Given the water scarcity in various regions of the country, it is recommended to use the minimum values of functions (linear or exponential) to estimate the irrigation hydromodule for different return periods. With respect to linear function changes, and considering that the irrigation hydromodule does not decrease significantly (around 20% on average) with an increase in the return period (up to 200 years), it is advisable to design and implement storage facilities, transfer systems, and water distribution networks in the studied plains with a low probability of occurrence (high return period). This approach minimizes the increase in costs and reduces risks during water transfer and distribution operations.

Keywords

Main Subjects


منابع
اسدزاده شرفه، حبیبه، و رئوف, مجید (1397). مقایسه کارایی مصرف آب در سیستم های آبیاری بارانی و هیدروفلوم (مطالعه موردی: دشت اردبیل). مدیریت آب و آبیاری، 8(1)، 55-68. doi:10.22059/jwim.2018.239976.556
حمادی، کاظم، ذاکری حسینی، فاطمه، حسین زاده ساداتی، محسن، و اله دین، سروش (1393). برآورد نیاز آبی محصولات کشاورزی در استان خوزستان. علوم و مهندسی آب. 9: 16-7. https://sanad.iau.ir/en/Article/921902
رئوف، مجید (1402). بررسی تغییرات هیدرومدول آبیاری در شرایط آب و هوایی و الگوهای کشت متفاوت. دانش آب و خاک. 33 (4): 99-85. doi:10.22034/ws.2021.46181.2417
رئوف، مجید، امیرزاده، آرش، و مصطفی زاده، رئوف (1402). اثر پارامترهای اقلیمی و الگوی کشت روی تبخیر-تعرق و هیدرومدول آبیاری در برخی مناطق شمال‌غرب ایران. آبیاری و زهکشی ایران، 17(5)، 857-868. https://idj.iaid.ir/data/idj/coversheet/head_fa.jpg
عباسی، فریبرز، سهراب، فرحناز، و عباسی، نادر (1394). راندمان‌های آبیاری، تغییرات زمانی و مکانی آن در ایران. گزارش کامل. ویرایش سوم. موسسه تحقیقات فنی و مهندسی کشاورزی. 52 ص. http://fipak.areeo.ac.ir/site/catalogue/18790471
محمودی‌زاده، سعید، و اسماعیلی، علی (1400). مدل‌سازی زمین‌آماری تغییرات مکانی کیفیت آب های زیرزمینی با استفاده از GIS و مدل ویلکوکس (مطالعه موردی بخش‌های مرکزی و کنارک، چابهار). محیط زیست و مهندسی آب، 7(1)، doi:10.22034/jewe.2020.255847.1460
ملاح، سینا، غالبی، سعید، امداد، محمدرضا، و پناهی، مهدی (1400). ارزیابی شاخص هیدرومدول آبیاری به‌منظور کاهش تأثیر تنش خشکی و مصرف بهینه آب در گیاهان عمده الگوی کشت اراضی دشت هنام. تحقیقات علوم زراعی در مناطق خشک، 3(1)، 15-24. doi: 10.22034/csrar.2021.280267.1092
نظری فر، محمد هادی، بهبهانی، محمود رضا، و مومنی، رضوانه (1391). ارزیابی سناریوهای متفاوت کم آبیاری و تعیین هیدرومدول و سطح بهینه الگوی کشت در شرایط کم آبیاری. علوم و مهندسی آبیاری،5 (2)،91-105. https://dorl.net/dor/20.1001.1.25885952.1391.35.2.10.6
 References
Abd El Baki, H.M., Raoof, M. & Fujimaki, H. (2020). Determining irrigation depths for soybean using a simulation model of water flow and plant growth and weather forecasts. Agronomy, 369: 1-13. doi:10.3390/agronomy10030369
Mahmodizadeh, S. & Esmaeily, A. (2021). Geostatistical Modelling of Spatial Changes in Groundwater Quality Using GIS and Wilcox Model (Case Study: Central and Kenark Districts, Chabahar). Environment and Water Engineering, 7(1), 103-118. doi: 10.22034/jewe.2020.255847.1460 [In Persian].
Abbasi, F., Sohrab, F. & Abbasi, N. (2015). Irrigation efficiencies, their temporal and spatial variations in Iran. Full report. Third edition. Agricultural Engineering and Technical Research Institute. 52 pp. http://fipak.areeo.ac.ir/site/catalogue/18790471 [In Persian].
Nazarifar, M., Behbahani, S. & Momeni, R. (2012). Evaluation of different deficit irrigation scenarios and determine of optimal hydromodoul and area of eropping pattern in the deficit irrigation conditions. Irrigation Sciences and Engineering, 35(2), 91-106. https://dorl.net/dor/20.1001.1.25885952.1391.35.2.10.6  [In Persian].
Mallah, S., Ghalebi, S., Emdad, M,R. & Panahi, M. (2021). Evaluation of irrigation hydro-module of major plants of cropping pattern to reduce water stress and optimize agricultural water consumption in Honam sub-catchment. Journal of Crop Science Research in Arid Regions, 3(1), 15-24.
 doi: 10.22034/csrar.2021.280267.1092
Raoof, M., Amirzadeh, A. & Mostafazadeh, R. (2024). Effect of climatic parameters and cultivation pattern on Evapotranspiratin and Irrigation Hydromodul in some areas of northwest Iran. Iranian Journal of Irrigation and Drainage, 17(5), 857-868. https://idj.iaid.ir/data/idj/coversheet/head_fa.jpg [In Persian].
Raoof, M. (2023). Investigating the Irrigation Hydromodul Changes in Different Climatic Conditions and Cultivation Patterns. Water and Soil Science, 33(4), 85-99. doi: 10.22034/ws.2021.46181.2417 [In Persian].
Hemmadi, K., Zakeri Hosseini, F., Hosseinzadeh Sadati, M., & Elhadin, S. (2014). Estimating the water requirement of agricultural products in Khuzestan Province. Water Science and Engineering. 9: 7-16. https://sanad.iau.ir/en/Article/921902 [In Persian].
Asadzadeh Sharafeh, H., & Raoof, M. (2018). Comparison of Water Use Efficiency in Sprinkler and Hydroflume Irrigation Systems (Case Study: Ardabil Plain). Water and Irrigation Management, 8(1), 55-68. doi: 10.22059/jwim.2018.239976.556 [In Persian].
Aghajani, A., Bidabadi, F.S., Joolaei, R., & Keramatzadeh, A. (2013). Managing cropping patterns agricultural crops of Three Counties of Mazandarn province of Iran. International Journal of Agriculture and Crop Sciences, 5(6), 596. [In Persian]. https://www.agronomy.org/
Ahmad, A.Y., Saleh, I. A., Balakrishnan, P., & Al-Ghouti, M. A. (2021). Comparison GIS-Based interpolation methods for mapping groundwater quality in the state of Qatar. Groundwater for Sustainable Development, 13, 100573.
 doi: 10.1016/j.gsd.2021.100573
Anonymous, (2006). Basics and criteria for designing, equipping and renovating arid lands. Ministry of Agriculture 2 (346): 181 p. [In Persian].
Bouman, B. A. M., & Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 49(1), 11-30. doi:10.1016/S0378-3774(00)00128-1
Bouman, B. A. M., Van Keulen, H., Van Laar, H. H., & Rabbinge, R. (1996). The ‘School of de Wit’crop growth simulation models: a pedigree and historical overview. Agricultural systems, 52(2-3), 171-198.
 doi:10.1016/0308-521X(96)00011-X
Dong, Q. (2018). Study on the Crop Irrigation Water Requirement Based on Cropwat in Jinghuiqu Irrigation Area. Archives Of Civil And Mechanical Engineering, 394. doi:10.1088/1757-899X/394/2/022037
FAO, (2009). Food and Agriculture Organization of the United Nations. How to feed the World in 2050. https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
Gabr, M. E. S. (2022). Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Modeling Earth Systems and Environment, 8(3), 3127-3142. doi:10.1007/s40808-021-01199-0
Heydari, M.M., Noushabadi, R.N., Vahedi, M., Abbasi, A., & Heydari, M. (2013). Comparison of Evapotranspiration models for estimating reference Evapotranspiration in arid environment. Middle-East J. Science, Research, 15: 1331-1337. [In Persian]. doi:10.1016/j.agwat.2016.02.019
Karamouz, M., Ahmadi, B., & Zahmatkesh, Z. (2013). Developing an agricultural planning model in a watershed considering climate change impacts. Journal of Water Resources Planning and Management, 139(4), 349-363. doi:10.1061/(ASCE)WR.1943-5452.0000263
Osama, S., Elkholy, M., & Kansoh, R. M. (2017). Optimization of the cropping pattern in Egypt. Alexandria Engineering Journal, 56(4), 557-566. doi:10.1016/j.aej.2017.04.015
Raoof, M., & Azizi Mobaser, J. (2019). Reference Evapotranspiration Estimation Using Locally Adjusted Coefficient of Angstrom’s Radiation Model in an Arid-Cold Region. Journal of Agricultural Science and Technology, 21(2), 487-499. https://dorl.net/dor/20.1001.1.16807073.2019.21.2.5.6
Singh, A., & Panda, S. N. (2012). Development and application of an optimization model for the maximization of net agricultural return. Agricultural Water Management, 115, 267-275. doi:10.1016/j.agwat.2012.09.014