منابع
عالمپور رجبی، فرناز، قربانی، محمدعلی، و اسدی، اسماعیل (1402). مدلسازی فرایند تبخیر با استفاده از الگوریتم هیبریدی پرنده کوت و شبکه عصبی مصنوعی. مدلسازی و مدیریت آب و خاک، 4(2)، 1-12. doi: 10.22098/MMWS.2023.12692.1266
زهساز، کیمیا، دربندی، صابره، و میرزانیا، احسان (1402). مدلسازی زمانی و مکانی بارش با استفاده از MLR، ANN و الگوریتم هیبریدی HBA-ANN.
مدلسازی و مدیریت آب و خاک،
4(2)، 12-25. doi:
10.22098/MMWS.2023.12779.1273
میرزانیا، احسان، ملک احمدی، حسین، شاهمحمدی، یادگار، و ابراهیمزاده، علی (1400). تأثیر موجک بر افزایش دقت مدلهای تخمینی در مدلسازی بارش-رواناب (مطالعۀ موردی: حوضۀ صوفیچای). مدلسازی و مدیریت آب و خاک، 1(3)، 69-79.
doi: MMWS.2021.9335.1035/10.22098
References
Alampour Rajabi, F., Ghorbani, M.A., & Asadi, E. (2023). Modeling of the evaporation process using the hybrid algorithm of the Kot bird and the artificial neural network. Water and Soil Modeling and Management, 4(2), 1-12.
doi:10.22098/MMWS.2023.12692.1266
[In Persian]
Amuda, A., Brest, J., & Mezura-Montes, E. (2013). Structured Population Size Reduction Differential Evolution with Multiple Mutation Strategies on CEC 2013 real parameter optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, Pp. 1925–1931.
doi: 10.1109/CEC.2013.6557794
Bahmani, R., Taha, B.M., & Ouarda, J. (2021) Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology, 595(4), 625-642.
doi: 10.1016/j.jhydrol.2020.125659
Dehghani, R., & Babaali, H. (2022). Evaluation of Statistical Models and Modern Hybrid Artificial Intelligence in Simulation of Runoff Precipitation Process. Sustain. Water Resour. Manag, 154(8), 225-242.
doi: 10.1007/s40899-022-00743-9
Dehghani, R., & Torabi Poudeh, H. (2020). Applying hybrid artificial algorithms to the estimation of river flow: a case study of Karkheh catchment area. Arabian Journal of Geosciences, 6(2), 426-448.
doi: 10.1007/s12517-021-07079-2
Dehghani, R., & Torabi, H. (2021a). Application of novel hybrid artificial intelligence algorithms to groundwater simulation. International Journal of Environmental Science and Technology, 14(3), 242-258.
doi: 10.1007/s13762-021-03596-5
Dehghani, R., & Torabi, H. (2021b). Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Modeling Earth Systems and Environment, 18(4), 324-341.
Dehghani, R., & Torabi, H. (2022). The effect of climate change on groundwater level and its prediction using modern meta- heuristic model. Groundwater for Sustainable Development, 16(4), 224-238.
doi: 10.1016/j.gsd.2021.100702
Dehghani, R., Torabi Poudeh, H., Younesi, H., & Shahinejad, B. (2020a). Daily Streamflow Prediction Using Support Vector Machine-Artificial Flora (SVM-AF) Hybrid Model. Acta Geophysica, 68(6), 51-66.
doi: 10.1007/s11600-020-00472-7
Dehghani, R., Torabi Poudeh, H., Younesi, H., & Shahinejad, B. (2020b). Forecasting Daily River Flow Using an Artificial Flora–Support Vector Machine Hybrid Modeling Approach (Case Study: Karkheh Catchment, Iran). Air, Soil, and Water Research, 14(2), 22-35.
doi: 10.1177/1178622120969659
Emamgholizadeh, S., Moslemi, K., & Karami, G. (2014). Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resources Management, 28(3), 5433–5446.
doi: 10.1007/s11269-014-0810-0
Feng, F., Ghorbani, H., & Radwan, A. (2023). Predicting groundwater level using traditional and deep machine learning algorithms. Frontiers in Environmental Science,12(4), 266-280. doi: 10.3389/fenvs.2024.1291327
Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., Kashani, M.H., & Mohammadi, B. (2017a). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theoretical and Applied Climatology, 133(3–4),1119–1131.
doi: 10.1007/s00704-017-2244-0
Jeihouni, E., Mohammadi, M., Eslamian, S., & Zareian, M.J. (2019). Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study—Shabestar plain, Iran. Environmental Monitoring and Assessment, 191(10), 620-632, doi: 10.1007/s10661-019-7784-6
Kaya, Y., Üneş, F., Demirci, M., Taşar, B., & Varçin, H. (2018). Groundwater level prediction using artificial neural network and M5 tree models. Aerul si Apa Componente ale Mediului, 6(4), 371-381. doi:10.1504/IJHST.2016.079356
Kisi, O., Karahan, M., & Sen, Z. (2006). River suspended sediment modeling using fuzzy logic approach, Hydrology of Process, 20(2), 4351-4362. doi:10.1002/hyp.6166
Malekzadeh, M., Kardar, S., Saeb, K., Shabanlou, S., & Taghavi, L. (2019). A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model. Water Resources Management, 33(4),1609–1628.
doi: 10.1007/s11269-019-2193-8
Mirzania, E., Malek Ahmadi, H., Shah Mohammadi, Y., & Ebrahimzadeh, A. (2021). The effect of wavelet on increasing the accuracy of estimation models in rainfall-runoff modeling (case study: Sofichai basin). Water and soil modeling and management, 1(3), 69-79.
doi: 10.22098/MMWS.2021.9335.1035 [In Persian]
Mirzavand, M., & Ghazavi, R. (2015). A Stochastic Modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resources Management, 29, 1315–1328. doi: 10.1007/s11269-014-0875-9
Moravej, M., Amani, P., & Hosseini-Moghari, M. (2020). Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSANN). Groundwater for Sustainable Development, 11(1), 447-462.
doi: 10.1016/j.gsd.2020.100447
Nagy, H., Watanabe, K., & Hirano, M. (2002). Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulics Engineering, 128(6), 558-559.
doi: 10.1061/(ASCE)0733-9429(2002)128:6(588)
Nourani, V., Alami, M.T., & Vousoughi, F.D. (2015). Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. Journal of Hydrology, 524(3), 255–269. doi: 10.1016/j.jhydrol.2015.02.048
Ostu, N. (1979). A Threshold Selection Method from Gray-Level Histograms [J]. IEEE Transactions on Systems Man and Cybernetics, 9(1), 62-66. doi: 10.1109/TSMC.1979.4310076
Sakizadeh, M., Mohamed, M.M.A., & Klammler, H. (2019). Trend Analysis and Spatial Prediction of Groundwater Levels Using Time Series Forecasting and a Novel Spatio-Temporal Method. Water Resources Management, 33(2), 1425–1437.
doi: 10.1007/s11269-019-02208-9
Sharafati, A., Haji, S.B., & Neshat, A. (2020). A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591(4), 336-352. doi: 10.1016/j.jhydrol.2020.125468
Shin, S., Kyung, D., Lee, S., Taik & Kim, J., & Hyun, J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(4), 127-135.
doi: 10.1016/j.eswa.2004.08.009
Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York
Wang, D., Safavi, A.A., & Romagnoli, J.A. (2000). Wavelet-based adaptive robust M-estimator for non-linear system identification, AIChE Journal, 46(4), 1607-1615.
doi: 10.1002/aic.690460812
Wu, Z., Lu, C., Sun, Q., Lu, W., He, X., & Qin, T. (2023). Predicting groundwater level based on machine learning: a case study of the hebei plain. Water, 15 (4), 823.
doi:10.3390/w15040823
Zehsaz, K., Darbandi, S., & Mirzania, E. (2023). Temporal and spatial modeling of precipitation using MLR, ANN and HBA-ANN hybrid algorithm. Water and Soil Modeling and Management, 4(2), 12-25.
doi: 10.22098/MMWS.2023.12779.1273 [In Persian]