The rainfall-runoff hydrological simulation model based on satellite products with the effect of climate scenarios in the study area of Takab

Document Type : Research/Original/Regular Article

Authors

1 PhD student, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Assistant Professor/ Department of Water Engineering, Faculty of Agriculture, University of Tabriz

3 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Abstract

Abstract

Introduction

Runoff is an important hydrological component in the assessment of water resources. Most water resource applications rely on runoff as an essential hydrologic variable. The hydrology of basins is influenced by many factors, including climate change. Basin discharge estimation is an important step in planning and managing surface water resources, especially in basins that lack reliable flow data. In this study, due to the inappropriate spatial distribution of meteorological stations in the study area of Takab, satellite images and products were used to evaluate the possible effects of climatic factors including rainfall and temperature on runoff. For this purpose, in order to investigate the changes in rainfall and temperature from 1998 to 2020, TRMM and FLDAS satellite products, respectively, were evaluated using different statistical criteria with Takab synoptic station data. The evaluation results indicate the appropriate accuracy of these satellite products compared to the observed values. Choosing a suitable rainfall-runoff model for the catchment area is important for the efficiency of planning and management of water resources. Also, choosing a model requires recognizing the capabilities and limitations of hydrological models of the catchment area, which requires access to meteorological parameters such as rainfall and temperature. According to the studies, the IHACRES hydrological model has been used to estimate the amount of changes in discharge and runoff in many basins. Its purpose is to help water resources engineers describe the relationship between basin runoff and precipitation.



Materials and Methods

Finally, the trend of changes in rainfall and temperature was investigated with the non-parametric Mann-Kendall and Sense's slope tests. Examining the rainfall data of the study area of Takab indicates that the highest amount of rainfall occurs in the 3 months of April, March and November respectively. which is approximately equivalent to 45% of the total annual rainfall of the study area and its values are estimated as 53.1, 40.4 and 39.6 mm per month respectively. Also, the highest and lowest average temperatures of the range are in the months of July and January, respectively, which are estimated at 24.2 and -3.4 degrees Celsius, respectively. In the following, the IHACRES model was used to simulate the river discharge using temperature and rainfall data from satellite products. Also, in this study, the IHACRES model was used to predict production runoff under the influence of climate change and evaluate different climate scenarios. For this purpose this study focused on Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) scenarios (RCP4.5 and RCP8.5) for the coming years until the year 2100 were used.



Results and Discussion

The flow simulation results from the RCP2.6 scenario indicate that the greatest increase in discharge in the coming period for the Takab study area was estimated for the months of December, November and January. Also, according to the RCP8.5 scenario, the largest flow increase in the future period was calculated in the months of August, July and January, respectively. In addition, the maximum decrease in discharge in both scenarios was simulated in the months of April and May, respectively. According to the obtained results, according to the RCP2.6 and RCP8.5 climate scenarios, the average annual discharge was predicted to be equal to 8.3 and 1.5 cubic meters per second, respectively. In order to evaluate the IHACRES model, the determination coefficient (R2), Nash-Sutcliffe efficiency coefficient (ENS), root mean square error (RMSE) and bias error (Bias) were used in the calibration and validation period. According to the obtained results, these values for the 14-year period of model calibration are 0.82 and 0.80 (-), 1.4 (cubic meters per second) and 0.42, respectively. Also, these values for the validation period were calculated as 0.71 and 0.68 (-), 4.7 (cubic meter per second) and 0.1, respectively.



Conclusions

In this study, to investigate the trend of rainfall and temperature changes from 1998 to 2020, TRMM and FLDAS satellite products, respectively, were evaluated using different statistical criteria with Takab synoptic station data. According to the obtained results, the annual changes of rainfall in the entire study area of Takab are incrementally insignificant. Also, in general, the percentage of annual rainfall changes in the highlands is higher than the average annual rainfall in the plains. After examining the trend of temperature and rainfall data, the IHACRES rainfall-runoff model was used to simulate the discharge. After simulating discharge for the statistical period, different climate scenarios were used to predict production runoff. According to the obtained results, according to the RCP2.6 and RCP8.5 climate scenarios, the average annual discharge was predicted to be equal to 8.3 and 1.5 cubic meters per second, respectively. According to the RCP2.6 scenarios, the predicted discharge has an insignificant upward slope. Also, the percentage of annual changes in river flow according to this scenario was calculated as 19.4%. Also, in the examination of the output of the IHACRES model resulting from the RCP8.5 scenarios, it was observed that the future trend of the river is a significant downward trend. In other words, the percentage of annual changes in the simulated discharge according to this scenario was estimated as -68.1%.

Keywords

Main Subjects


منابع
آوند، محمدتقی، مرادی، حمیدرضا و حزباوی، زینب (1402). ارزیابی خشکسالی هواشناسی و هیدرولوژیکی زمان حال و پیش‌نگری آن در آینده در حوزه آبخیز تجن. مدلسازی و مدیریت آب و خاک، 4(4)، 78-57.doi:10.22098/mmws.2023.13352.1330
اللهویردی پور، پویا، قربانی، محمد علی و اسدی، اسماعیل (1402). ارزیابی اثرات تغییر اقلیم بر طبقه‌بندی اقلیمی ایران. مدل‌سازی و مدیریت آب و خاک، 4(3)، 112-95.  doi:10.22098/mmws.2023.12755.1271
حسنی، محمد رضا، نیک‌سخن، محمدحسین، اردستانی، مجتبی و موسوی جنبه سرایی، سید فرید (1402). ارزیابی اثرات تغییر اقلیم بر رواناب شهری بر اساس مدل‌های CMIP6 (مطالعه موردی: منطقة 10 شهرداری تهران). مدلسازی و مدیریت آب و خاک، 3(2)، 269-285.‎ doi:10.22098/mmws.2022.11849.1176
سلیمی، محسن، ستاری، محمدتقی و پارسا، جواد. (1402). بررسی اثر تغییر اقلیم براساس سناریوهای مختلف بر رواناب و جریان ورودی به مخزن سد نهند. دانش آب و خاک، 33(4)، 133-147. doi:10.22034/ws.2022.52756.2486
شرکت مدیریت منابع آب ایران (1392). گزارش حوضه دریاچه ارومیه، بیلان آب محدوده مطالعاتی تکاب، شرکت مهندسین مشاور.
رحیمیانی ایرانشاهی، حمید، مرادی، حمیدرضا و جلیلی، خلیل (1401). روند تغییرات بارش و دما در مقیاس‌های زمانی مختلف در حوزة آبخیز کرخه. مدلسازی و مدیریت آب و خاک، 2(2)، 1-12. doi:10.22098/mmws.2022.9520.1048
گلکاریان، علی، شیخ رودی، الهه، زرین، آذر و راشکی، علیرضا (1402). بررسی و تحلیل اثرهای تغییرات اقلیمی بر مقدار رواناب و رسوب با استفاده از مدل SWAT (مطالعه موردی: حوزة آبخیز فریزی). مدلسازی و مدیریت آب و خاک، 4(4)، 298-283.  doi:10.22098/mmws.2023.13722.1361
لطفی‌راد، مرتضی، ادیب، آرش و حقیقی، علی (1397). تخمین رواناب روزانه به کمک مدل نیمه مفهومی IHACRES در حوضۀ آبریز ناورود گیلان. اکوهیدرولوژی، 5(2)، 460-449. doi:10.22059/ije.2017.234237.614
موجرلو، فاطمه، فضل اولی، رامین و عمادی، علیرضا (1398). کاربرد مدل IHACRES برای ارزیابی اثرات تغییر اقلیم بر دبی حوضه آبریز تجن.  آبیاری و زهکشی ایران. 13(1)، 129-141. doi:20.1001.1.20087942.1398.13.1.12.8
نوری، مهراب، مرید، سعید، کریمی، نعمت‌الله و غلامی، هوشنگ (1400). تغییرات مکانی و زمانی روند در دما و بارش حوضه آبریز فرامرزی ارس. تحقیقات منابع آب ایران، 17(3)، 104-117. doi: 20.1001.1.17352347.1400.17.3.5.0
References
 
Abushandi, E. H., & Merkel, B. J. (2011). Application of IHACRES rainfall-runoff model to the Wadi Dhuliel arid catchment, Jordan. Journal of Water and Climate Change, 2(1), 56-71. doi:10.2166/wcc.2011.048
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Physics and Chemistry of the Earth, Parts A/B/C, 111, 65-77. doi:10.1016/j.pce.2019.05.002
Allahverdipour, P., Ghorbani, M. A., & Asadi, E. (2023). Evaluating the effects of climate change on the climatic classification in Iran. Water and Soil Management and Modelling. doi:10.22098/mmws.2023.12755.1271 [In Persian]
Avand, M., Moradi, H. R., & Hazbavi, Z. (2023). Evaluation of current meteorological and hydrological drought and its future forecast in the Tajan watershed. Water and Soil Management and Modelling. doi:10.22098/mmws.2023.13352.1330. [In Persian]
Caletka, M., Šulc Michalková, M., Karásek, P., & Fučík, P. (2020). Improvement of SCS-CN initial abstraction coefficient in the Czech Republic: a study of five catchments. Water, 12(7), 1964. doi:10.3390/w12071964
Carcano, E. C., Bartolini, P., Muselli, M., & Piroddi, L. (2008). Jordan recurrent neural network versus IHACRES in modelling daily streamflows. Journal of hydrology 362(3–4), 291–307. doi:10.1016/j.jhydrol.2008.08.026
Chien, H., Yeh, P.J.-F. and Knouft, J. (2013). Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. 491, 73-88. doi:10.1016/j.jhydrol.2013.03.026
Ebert, E.E., Janowiak, J.E. and Kidd, C. (2007). Comparison of near-real-time rainfall estimates from satellite observations and numerical models. 88(1), 47-64. doi:10.1175/BAMS-88-1-47
Fattahi, P., Ashrafzadeh, A., Pirmoradian, N., & Vazifedoust, M. (2022). Integrating IHACRES with a data-driven model to investigate the possibility of improving monthly flow estimates. Water Supply, 22(1), 360-371. doi:10.2166/ws.2021.267
Ghanim, A. A., Beddu, S., Abd Manan, T. S. B., Al Yami, S. H., Irfan, M., Mursal, S. N. F., & Khan, T. (2022). Prediction of runoff in watersheds located within data-scarce regions. Sustainability, 14(13), 7986. doi:10.3390/su14137986
Gholami, H., Lotfirad, M., Ashrafi, S. M., Biazar, S. M., & Singh, V. P. (2022). Multi-GCM ensemble model for reduction of uncertainty in runoff projections. Stochastic Environmental Research and Risk Assessment, 1-12. doi:10.1007/s00477-022-02311-1
Golkarian, A., Sheikhroodi, E., Zarrin, A., & Rashki, A. (2023). Investigating and analyzing the effects of climate change on the amount of runoff and sediment using the SWAT model (Case study: Ferizi watershed). Water and Soil Management and Modelling, doi:10.22098/mmws.2023.13722.1361. [In Persian]
Hassani, M. R., Niksokhan, M. H., Ardestani, M., & Mousavi Janbehsarayi, S. F. (2022). Evaluating the effects of climate change on urban runoff based on CMIP6 models (Case study: district 10 of Tehran municipality). Water and Soil Management and Modelling, 3(2), 269-285. doi:10.22098/mmws.2022.11849.1176. [In Persian]
Ibrahim, A., Zakaria, N., Harun, N., & Hashim, M. M. M. (2021, March). Rainfall runoff modeling for the basin in Bukit Kledang, Perak. In IOP Conference Series: Materials Science and Engineering (Vol. 1106, No. 1, p. 012033). IOP Publishing. doi:10.1088/1757-899X/1106/1/012033
IPCC. (2007). The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996, 113-119.
IWRMC (Iran Water Resources Management Company) (2013) Report of Urmia Lake watershed. Water resources balance report of the Takab study area Yekom Consulting Engineers Company [In Persian]
Jakeman, A. J., Littlewood, I. G., & Whitehead, P. G. (1990). Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of hydrology, 117(1-4), 275-300. doi:10.1016/0022-1694(90)90097-H
Kendall, M. G. (1948). Rank correlation methods.
Lotfirad, M., Adib, A., & Haghighi, A. (2018). Estimation of daily runoff using of the semi-conceptual rainfall-runoff IHACRES model in the Navrood watershed (a watershed in the Gilan province. Iranian Journal of Ecohydrology, 5(2), 449-460. doi:10.22059/IJE.2017.234237.614. [In Persian]
Mann, H. (1945). Nonparametric tests against trend. 245-259. doi:10.2307/1907187
Meraj, G., Singh, S. K., Kanga, S., & Islam, M. (2021). Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Modeling Earth Systems and Environment, 1-20. doi:10.1007/s40808-021-01131-6
Mitchell, J., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W., Lamb, H., Rao, K. and Wallén, C, Switzerland. (1966). Climatic Change. Technical Note, No. 79. 99.
Mojerloo, F., Fazloula, R., & emadi, A. (2019). Application of theIHACRES model to assess the effects of climate change on the discharge of Tajan Watershed. Iranian Journal of Irrigation & Drainage, 13(1), 129-141. doi:20.1001.1.20087942.1398.13.1.12.8.  [In Persian]
National Research Council. (1991). Opportunities in the hydrologic sciences. National Academies Press.
Nouri, M., Morid, S., Karimi, N., & Gholami, H. (2021). Spatial and temporal variation of temperature and precipitation trends of Aras Transboundary River Basin. Iran-Water Resources Research, 17(3), 104-117. doi:20.1001.1.17352347.1400.17.3.5.0. [In Persian]
Ogden, F. L., Hawkins, R. P., Walter, M. T., & Goodrich, D. C. (2017). Comment on “Beyond the SCS‐CN method: A theoretical framework or spatially lumped rainfall‐runoff response” by MS Bartlett et al. Water Resources Research, 53(7), 6345-6350. doi:10.1002/2016WR020176
Rahimiani Iranshahi, H., Moradi, H. R., & Jalili, K. (2022). Trend of precipitation and temperature changes at different time scales in the Karkheh Watershed. Water and Soil Management and Modelling, 2(2), 1-12. doi:10.22098/mmws.2022.9520.1048. [In Persian]
Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2018). Surface runoff prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arabian Journal of Geosciences, 11(3), 1-16. doi:10.1007/s12517-018-3397-6
Salimi, M., Sattari, M. T., & Parsa, J. (2023). Investigating the effect of climate change based on different scenarios on the runoff and inflow to Nahand dam reservoir. Water and Soil Science, 33(4), 133-147. doi:10.22034/ws.2022.52756.2486. [In Persian]
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379-1389.
Shin, M. J., & Kim, C. S. (2021). Component combination test to investigate improvement of the IHACRES and GR4J rainfall–runoff models. Water, 13(15), 2126. doi:10.3390/w13152126
Suroso, S., Santoso, P. B., Birkinshaw, S., Kilsby, C., Bardossy, A., & Aldrian, E. (2023). Assessment of TRMM rainfall data for flood modelling in three contrasting catchments in Java, Indonesia. Journal of Hydroinformatics. doi:10.2166/hydro.2023.132
Walling, D., Fang, D.J.G. and change, p. (2003). Recent trends in the suspended sediment loads of the world's rivers. 39(1-2): 111-126. doi:10.1016/S0921-8181(03)00020-1.
Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., & Jakeman, A. J. (1997). Performance of conceptual rainfall‐runoff models in low‐yielding ephemeral catchments. Water Resources Research, 33(1), 153-166. doi:10.1029/96WR02840
Yue, S., & Hashino, M. (2003). Long term trends of annual and monthly rainfall in Japan 1. JAWRA Journal of the American Water Resources Association, 39(3), 587-596. doi:10.1111/j.1752-1688.2003.tb03677.x
Zhao, Y., Zou, X., Gao, J., Xu, X., Wang, C., Tang, D., Wang, T. and Wu, X. (2015). Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China. 536, 803-812. doi:10.1016/j.scitotenv.2015.07.119