منابع
اسدی نلیوان، امید، رحمانی، مجید، وکیلی تجره، فرزانه و بیات، اصغر (1403). اولویتبندی عوامل و پهنهبندی حساسیت وقوع زمینلغزش در حوزة آبخیز سد کرج. مهندسی و مدیریت آبخیز، 16(1)، 1-15.
doi: 10.22092/ijwmse.2023.357778.1960
شیرانی، کورش و عرب عامری، علیرضا (1394). پهنهبندی خطر وقوع زمینلغزش با استفاده از روش رگرسیون لجستیک، مطالعه موردی: حوزه دز علیا.
علوم آب و خاک، 72، 334-321. doi:
10.18869/acadpub.jstnar.19.72.27
صدیقی، حدیثه، قاسمی، احمدرضا. 1402. مدلسازی خطر وقوع زمینلغزش با استفاده از مدل رگرسیون لجستیک (مطالعه موردی: استان چهار محال و بختیاری). پژوهشهای دانش زمین، 14، 42-60. doi: 10.48308/esrj.2023.104053
قویمیپناه، محمدحسین، خالدی درویشان، عبدالواحد و قویمیپناه، محمدرضا (1396). صحتسنجی روشهای تحلیل سلسله مراتبی (AHP) و رگرسیون چند متغیره (MR) در پهنهبندی زمینلغزش، مطالعه موردی: حوزة آبخیز ولیعصر، استان اردبیل، اکوهیدرولوژی، 4(3)، 789-775.
doi: 10.22059/ije.2017.62626
متولی، علیرضا، طالبی، علی، صفایی، مهرداد و اختصاصی، محمدرضا (1396). بررسی کارایی دو مدل پایه فیزیکی SINMAP و SHALSTAB در پهنهبندی خطر وقوع زمینلغزش، مطالعه موردی: محدودة منطقه چهاردانگه، استان مازندران. مرتع و آبخیزداری (منابع طبیعی ایران)، 70(1)، 207-218. doi: 10.22059/jrwm.2017.61977
موسوی، سیده معصومه.، رضایی مقدم، محمدحسین.، رجبی، معصومه (1401). پهنهبندی خطر وقوع زمینلغزش در حوضهآبریز رودخانه زرد با استفاده از منطق فازی. هیدروژئومورفولوژی،3 (9)، 25-48.
References
Al-Rawabdeh, A., He, F., Moussa, A., El-Sheimy, N., & Habib, A. (2016). Using an unmanned aerial vehicle-based digital imaging system to derive a 3D point cloud for landslide scarp recognition. Remote Sensing, 8(2), 95.
doi: 10.3390/rs8020095
Asadi Nalivan, O., Rahmani, M., Vakili tajareh, F. & Bayat, A. (2024). Prioritization of factors and zoning susceptibility of landslide in Karaj Dam Watershed. Watershed Engineering and Management, 16(1), 1-15. doi: 10.22092/ijwmse.2023.357778.1960. [In Persian]
Cakoglu, F., Gokceoglu, C., & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(3), 329-341. doi: 10.1016/S0169-555X(01)00094-7
Ghavimipanah, M. H., Khaledi Darvishan, A. & Ghavimipanah, M. R. (2017). Verification methods of Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) in landslide zoning (Case Study: Valiasr Watershed in Ardabil Province). Journal of Ecohydrology, 4(3), 775-789.
doi: 10.22059/ije.2017.62626. [In Persian]
Girma, F., Raghuvanshi, T.K., Ayenew, T., Hailemariam, T. (2015). Landslide hazard zonation in Ada Berga District, Central Ethiopia a GIS based statistical approach. Journal of Geomatics 90, 25–38. doi: 10.1007/s11069-014-1128-0
Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129, 376-386. DOI: 10.1016/j.geomorph.2011.02.024
Greco, R., Sorriso, Valvo. And Catalano, E. (2007). Logistic regression analysis in the evaluation of mass movement's susceptibility case study: Calabria, Italy. Engineering geology, 89, 47-66. doi: 10.1016/j.enggeo.2006.10.004
Li, R., Huang, S., & Dou, H. (2023). Dynamic risk assessment of landslide hazard for large-scale photovoltaic power plants under extreme rainfall conditions. Water, 15(15), 2832.
doi: 10.3390/w15152832
Motevali, A., Talebi, A., Safaei, M., & Ekhtesasi, M. (2017). Investigation of the efficiency of SINMAP and SHALSTAB Physically-based Models for landslide hazard zonation (Case Study: Chahar Donge region, Mazandaran Province). Journal of Range and Watershed Managment, 70(1), 207-218.
doi: 10.22059/jrwm.2017.61977. [In Persian]
Mousavi, S. M., Rezaei Moghaddam, M. H. & rajabi, M. (2022). Landslide Hazard Zoning in the Yellow River Basin Using Fuzzy Logic. Hydrogeomorphology, 9(30), 48-25. doi: 10.22034/hyd.2021.43189.1560. [In Persian]
Nahayo, L., Mupenzi, C., Habiyaremye, G., Kalisa, E., Udahogora, M., Nzabarinda, V., & Li, L. (2019). Landslides hazard mapping in Rwanda using bivariate statistical index method. Environmental Engineering Science, 36(8), 892-902. doi: 10.1089/ees.2018.0469
Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Hydrology, 513, 283-300. doi: 10.1016/j.jhydrol.2014.02.053
Nefeslioglu, H.A., Duman, T.Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology, 94, 401-418. doi: 10.1016/j.geomorph.2006.10.039
Ocakoglu, F., Gokceoglu, C., & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(3-4), 329-341. doi:10.1016/S0169-555X(01)00094-0
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287-301. doi: 10.1016/j.geomorph.2013.08.013
Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3), 185. doi: 10.1007/s12665-015-4892-7
Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71-84. doi: 10.1016/j.catena.2012.05.005
Ram, P., & Gupta, V. (2022). Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie Township, Lesser Himalaya, India. Environment, Development and Sustainability, 1-29. doi: 10.1007/s10668-022-02443-4
Roslee, R. (2017). Landslide susceptibility analysis (LSA) using deterministic model (Infinite Slope) (DESSISM) in the Kota Kinabalu Area, Sabah, Malaysia, Geological Behavior, 1(1), 6-9. doi: 10.26480/gbr.01.2017.06.09
Seddighi, H., & Ghasemi, A. R. (2023). Landslide risk modeling using logistics regression model (Case study: Chaharmahal and Bakhtiari province). Researches in Earth Sciences, 14(4), 42-60. doi: 10.48308/esrj.2023.104053. [In Persian]
Shirani K, Arabameri A R. (2015). Landslide Hazard Zonation Using Logistic Regression Method (Case Study:Dez-e-Oulia Basin).
Journal of Water and Soil Science; 72: 321-335. doi:
10.18869/acadpub.jstnar.19.72.27. [In Persian]
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water ResourcesResearch, 33(2), 309-319.
doi.org/10.1029/96WR03137
Versain, L. D., Banshtu, R. S., & Pandey, D. D. (2019). Comparative evaluation of GIS based landslide hazard zonation maps using different approaches. Geological Society of India, 93(6), 684-692. doi: 10.1007/s12594-019-1142-7
Vieira, B. C., Fernandes, N. F., Augusto Filho, O., Martins, T. D., & Montgomery, D. R. (2018). Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6), 1-15. doi: 10.1007/s12665-018-7429-6
Youssef, A. M., Pourghasemi, H. R., El-Haddad, B. A., & Dhahry, B. K. (2016). Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(1), 63-87. doi: 10.1007/s10064-015-0780-0
Zhang, Y., Deng, L., Han, Y., Sun, Y., Zang, Y., & Zhou, M. (2023). Landslide hazard assessment in highway areas of Guangxi Using Remote Sensing Data and a Pre-Trained XGBoost Model. Remote Sensing, 15(13), 3350. doi: 10.3390/rs15133350