Identifying Effective Factors and Landslide Risk Zoning using the Maximum Entropy Method(Case study: Chalus Watershed)

Document Type : Research/Original/Regular Article

Authors

1 Assistant Professor, Department of Environmental Hazards, Natural Disasters Research Institute, Tehran, Iran

2 Former Ph.D. Student, Watershed Management Engineering Department, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Abstract

Landslides are one of the most destructive types of domain movements and instabilities, which always cause soil erosion, produce sediment, destroy agricultural lands, gardens, and roads, and cause significant human and financial losses in different parts of the world. Especially in Iran due to the special conditions of the geological structure.

The watershed of Chalus River is located in the northern slope of Central Alborz and in the south of the city in the geographical longitude of 51°, 00'east to 51°, 35' east and latitude 36°, 08' north to 36°, 43' north. The studied basin of Chalus River watershed leads from the west to the Sardabroud River watershed, from the east to the Korkorsar River watershed, from the south to the Karaj watershed, and from the north to the Mazandaran Sea.

In this research, the most important factors affecting landslides have been investigated, which include topography, climate, geology, soil science, land use, distance from the river, topographic humidity index, and vegetation index.

After determining the most important factors affecting landslides in the studied watershed, a layer map was prepared. Then, by using the maximum entropy algorithm with the help of MaxEnt software, one of the capabilities of this model is to identify the most important influencing variables and determine the relative importance of each of the factors affecting the identification of landslide areas and analyze the sensitivity of the model using the Jackknife method.

In this method, after creating a complete model with the involvement of all variables, the modeling is repeated for the number of variables and each time one of the variables is removed from the modeling process. In this way, the effect of each variable in predicting the desired areas was evaluated. Then, in order to evaluate the model, the ROC curve was used, and the area under the obtained AUC chart was taken into consideration as a criterion of the model's discriminating power in detecting presence and non-presence points. In the next step, in order to prepare the stability index, SINMAP plugin and Arc view software were used. Then, by accepting the default values to recalibrate the parameters and apply the corresponding settings and values, the stability index was extracted. In the last stage of the current research, based on the effective factors in the Arc GIS10.8 software environment, a map of the risk of landslides in the Chalus watershed was prepared.

According to the results of the model, the most effective factors in the occurrence of landslides in the study area were rainfall factors, soil science, geological units, slope percentage, land use and distance from the river.

In the present study, AUC chart was used to validate the model. The number of output diagrams of the model is equal to the number of iterations of the model. Finally, the average of model iterations was considered as ROC diagram to evaluate the validity of the model.

The value of AUC for landslide validation is 0.73, which indicates the acceptable prediction and modeling of landslides by the model in the study area.

According to the results obtained from combining the results of the previous sections, the final map was prepared, which according to the findings of the research, the area and percentage of each of the landslide risk classes in the study area were obtained. In the landslide risk zoning map, the sensitivity of the region to the occurrence of this natural phenomenon was determined between zero and one.

Due to the special geographical situation of Iran, each year the phenomenon of landslides imposes a lot of human and financial losses on our country, and one of the ways to reduce these losses is to identify areas prone to landslides with forecasting and zoning methods and providing implementation solutions. In general, it can be said that in all areas where the risk of landslides is more likely, there are formations with low resistance, suitable slopes to provide a landslide bed, and landslide prone landforms. Due to the fact that the role of each factor depends on other effective factors, so its role in the occurrence or non-occurrence of landslides is not the same, therefore, the combination of factors has created a suitable platform for the occurrence of this natural phenomenon. In this regard, in this study, with the aim of zoning landslide risk using the maximum entropy method in the Chalus watershed, it was planned that according to the results obtained from the current study, the risk classes were low, relatively low, medium, relatively high and high, respectively 13.29 , 18.57, 23.73, 35.90 and 8.49 percent of the studied area, which indicates the high potential of the area to cause landslides, so the results of this research can be useful to managers and planners. It helps a lot so that they can make better decisions based on location data.

Keywords

Main Subjects


منابع
اسدی نلیوان، امید، رحمانی، مجید، وکیلی تجره، فرزانه و بیات، اصغر (1403). اولویت‌بندی عوامل و پهنه‌بندی حساسیت وقوع زمین‌لغزش در حوزة آبخیز سد کرج. مهندسی و مدیریت آبخیز، 16(1)، 1-15.
doi: 10.22092/ijwmse.2023.357778.1960
شیرانی، کورش و عرب عامری، علیرضا (1394). پهنه‌بندی خطر وقوع زمین‌لغزش با استفاده از روش رگرسیون لجستیک، مطالعه موردی: حوزه دز علیا. علوم آب و خاک، 72، 334-321. doi:10.18869/acadpub.jstnar.19.72.27
صدیقی، حدیثه، قاسمی، احمدرضا. 1402. مدل‌سازی خطر وقوع زمین‌لغزش با استفاده از مدل رگرسیون لجستیک (مطالعه موردی: استان چهار محال و بختیاری). پژوهشهای دانش زمین، 14، 42-60. doi: 10.48308/esrj.2023.104053
قویمی‌پناه، محمدحسین، خالدی درویشان، عبدالواحد و قویمی‌پناه، محمدرضا (1396). صحت‌سنجی روش‌های تحلیل سلسله مراتبی (AHP) و رگرسیون چند متغیره (MR) در پهنه‌بندی زمین‌لغزش، مطالعه موردی: حوزة آبخیز ولی‌عصر، استان اردبیل، اکوهیدرولوژی، 4(3)، 789-775.
doi: 10.22059/ije.2017.62626
متولی، علیرضا، طالبی، علی، صفایی، مهرداد و اختصاصی، محمدرضا (1396). بررسی کارایی دو مدل پایه فیزیکی SINMAP و SHALSTAB در پهنه‌بندی خطر وقوع زمین‌لغزش، مطالعه موردی: محدودة منطقه چهاردانگه، استان مازندران. مرتع و آبخیزداری (منابع طبیعی ایران)، 70(1)، 207-218. doi: 10.22059/jrwm.2017.61977
موسوی، سیده معصومه.، رضایی مقدم، محمدحسین.، رجبی، معصومه (1401). پهنه‌بندی خطر وقوع زمین‌لغزش در حوضه‌آبریز رودخانه زرد با استفاده از منطق فازی. هیدروژئومورفولوژی،3 (9)، 25-48.
 
References
Al-Rawabdeh, A., He, F., Moussa, A., El-Sheimy, N., & Habib, A. (2016). Using an unmanned aerial vehicle-based digital imaging system to derive a 3D point cloud for landslide scarp recognition. Remote Sensing, 8(2), 95.‏
doi: 10.3390/rs8020095
Asadi Nalivan, O., Rahmani, M., Vakili tajareh, F. & Bayat, A. (2024). Prioritization of factors and zoning susceptibility of landslide in Karaj Dam Watershed. Watershed Engineering and Management16(1), 1-15. doi: 10.22092/ijwmse.2023.357778.1960. [In Persian]
Cakoglu, F., Gokceoglu, C., & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(3), 329-341.‏ doi: 10.1016/S0169-555X(01)00094-7
Ghavimipanah, M. H., Khaledi Darvishan, A. & Ghavimipanah, M. R. (2017). Verification methods of Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) in landslide zoning (Case Study: Valiasr Watershed in Ardabil Province). Journal of Ecohydrology4(3), 775-789.
 doi: 10.22059/ije.2017.62626. [In Persian]
Girma, F., Raghuvanshi, T.K., Ayenew, T., Hailemariam, T. (2015). Landslide hazard zonation in Ada Berga District, Central Ethiopia a GIS based statistical approach. Journal of Geomatics 90, 25–38. doi: 10.1007/s11069-014-1128-0
Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129, 376-386.‏ DOI: 10.1016/j.geomorph.2011.02.024
Greco, R., Sorriso, Valvo. And Catalano, E. (2007). Logistic regression analysis in the evaluation of mass movement's susceptibility case study: Calabria, Italy. Engineering geology, 89, 47-66. doi: 10.1016/j.enggeo.2006.10.004
Li, R., Huang, S., & Dou, H. (2023). Dynamic risk assessment of landslide hazard for large-scale photovoltaic power plants under extreme rainfall conditions. Water, 15(15), 2832.‏
doi: 10.3390/w15152832
Motevali, A., Talebi, A., Safaei, M., & Ekhtesasi, M. (2017). Investigation of the efficiency of SINMAP and SHALSTAB Physically-based Models for landslide hazard zonation (Case Study: Chahar Donge region, Mazandaran Province). Journal of Range and Watershed Managment70(1), 207-218.
 doi: 10.22059/jrwm.2017.61977. [In Persian]
Mousavi, S. M., Rezaei Moghaddam, M. H. & rajabi, M. (2022). Landslide Hazard Zoning in the Yellow River Basin Using Fuzzy Logic. Hydrogeomorphology9(30), 48-25. doi: 10.22034/hyd.2021.43189.1560. [In Persian]
Nahayo, L., Mupenzi, C., Habiyaremye, G., Kalisa, E., Udahogora, M., Nzabarinda, V., & Li, L. (2019). Landslides hazard mapping in Rwanda using bivariate statistical index method. Environmental Engineering Science, 36(8), 892-902. doi: 10.1089/ees.2018.0469
Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Hydrology, 513, 283-300.‏ doi: 10.1016/j.jhydrol.2014.02.053
Nefeslioglu, H.A., Duman, T.Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology, 94, 401-418. doi: 10.1016/j.geomorph.2006.10.039
Ocakoglu, F., Gokceoglu, C., & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology42(3-4), 329-341. doi:10.1016/S0169-555X(01)00094-0
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287-301.‏ doi: 10.1016/j.geomorph.2013.08.013
Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3), 185.‏ doi: 10.1007/s12665-015-4892-7
Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71-84. doi: 10.1016/j.catena.2012.05.005
Ram, P., & Gupta, V. (2022). Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie Township, Lesser Himalaya, India. Environment, Development and Sustainability, 1-29.‏ doi: 10.1007/s10668-022-02443-4
Roslee, R. (2017). Landslide susceptibility analysis (LSA) using deterministic model (Infinite Slope) (DESSISM) in the Kota Kinabalu Area, Sabah, Malaysia, Geological Behavior, 1(1), 6-9. doi: 10.26480/gbr.01.2017.06.09
Seddighi, H., & Ghasemi, A. R. (2023). Landslide risk modeling using logistics regression model (Case study: Chaharmahal and Bakhtiari province). Researches in Earth Sciences14(4), 42-60. doi: 10.48308/esrj.2023.104053. [In Persian]
Shirani K, Arabameri A R.  (2015). Landslide Hazard Zonation Using Logistic Regression Method (Case Study:Dez-e-Oulia Basin). Journal of Water and Soil Science; 72: 321-335.  doi:10.18869/acadpub.jstnar.19.72.27. [In Persian]
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water ResourcesResearch33(2), 309-319.
 doi.org/10.1029/96WR03137
Versain, L. D., Banshtu, R. S., & Pandey, D. D. (2019). Comparative evaluation of GIS based landslide hazard zonation maps using different approaches. Geological Society of India, 93(6), 684-692. doi: 10.1007/s12594-019-1142-7
Vieira, B. C., Fernandes, N. F., Augusto Filho, O., Martins, T. D., & Montgomery, D. R. (2018). Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6), 1-15. doi: 10.1007/s12665-018-7429-6
Youssef, A. M., Pourghasemi, H. R., El-Haddad, B. A., & Dhahry, B. K. (2016). Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(1), 63-87.‏ doi: 10.1007/s10064-015-0780-0
Zhang, Y., Deng, L., Han, Y., Sun, Y., Zang, Y., & Zhou, M. (2023). Landslide hazard assessment in highway areas of Guangxi Using Remote Sensing Data and a Pre-Trained XGBoost Model. Remote Sensing, 15(13), 3350.‏ doi: 10.3390/rs15133350