منابع
ابراهیمیپاک، نیازعلی، تافته، آرش، اگدرنژاد، اصلان، و اسدی کپورچال، صفورا (1397). تعیین ضرایب تبخیر تعرق ماهانه گندم زمستانه با استفاده از روشهای مختلف تخمین تبخیر تعرق و تشت تبخیر در دشت قزوین. مهندسی آبیاری و آب، 32، 119-105.
احمدپری، هدیه، صفوی گردینی، مریم، و ابراهیمی، محبوبه (1398). انتخاب روش مناسب برآورد تبخیر تعرق مرجع در شرایط کمبود دادههای هواشناسی (مطالعه موردی شهرستان خرمبید در استان فارس). مدیریت اراضی، 7(2)، 231-223. doi:10.22092/lmj.2019.120559.
خاری، دانیال، اگدرنژاد، اصلان و ابراهیمی پاک، نیازعلی. (1402). مقایسه مدلهای هوش مصنوعی و مدلهای تجربی در برآورد تبخیر و تعرق مرجع (مطالعه موردی: ایستگاه سینوپتیک رامهرمز). مدلسازی و مدیریت آب و خاک، 3(2)، 112-124. doi:10.22098/mmws.2022.11293.1117.
طالبی، حامد، صمدیان فرد، سعید و ولیزاده کامران، خلیل. (1402). روش جدید مبتنی بر تصاویر ماهواره لندست 8 و سنجنده مادیس برای تخمین تبخیر و تعرق مرجع ماهانه در دو اقلیم خشک و نیمهخشک. مدلسازی و مدیریت آب و خاک، 3(3)، 180-195. doi:10.22098/mmws.2023.12048.1198.
محمودینژاد، وفا، هنربخش، افشین، عبدالهی، خدایار، و دیکارو، ماریو. (1403). ارزیابی روابط بین پارامترهای هواشناسی و تبخیر و تعرق واقعی با استفاده از رگرسیون و خوشهبندی سلسله مراتبی (مطالعه موردی: کستلوترانو ایتالیا). مدلسازی و مدیریت آب و خاک، 4(3)، 159-172. doi:10.22098/mmws.2023.12941.1289
References
Ahmadpari, H., Safavi Gerdini, M., & Ebrahimi, M. (2019) .An appropriate method for estimating potential evapotranspiration in the absence of meteorological data. Land Management Journal, 7(2), 223-231. doi:10.22092/lmj.2019.120559 [In Persian].
Allen, R., Pereira, L., Raes, D., & Smith. M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300: D05109.
Amirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 1-17. doi:10.1007/s12145-023-01127-z.
Asadzadeh Sh., Raouf, H. & Mahmoudi Fard, G. (2015). Comparison of different methods of estimating evaporation and transpiration of the reference plant in Ardabil plain. The Second National Conference on the Protection of Natural Resources and Environment, University of Mohaghegh Ardabili.
Beu, T.A. (2015). Introduction to Numerical Programming. A Pratical Guide for Scientists and Engineers Using Python and C/C++, CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
Bhattarai N, Mallick K, Stuart J, Vishwakarma, B.D., Niraula, R., Sen S., & Jain, M. (2019). An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data. Remote Sensing of Environment, 229, 69-92. doi:10.1016/j.rse.2019.04.026.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324.
Cai, Y., Guan, K., Lobell, D., Potgieter, A., Wang, S., Peng, J., Xu, T., Asseng, S., Zhang, Y., You L. & Peng, B. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 274, 144-159. doi:10.1016/j.agrformet.2019.03.010.
Choi, J., Gu, B. & Chin, S. (2020). Machine learning predictive model based on national data for fatal accidents of construction workers. Automation in Construction, 110, 102974. doi:10.1016/j.autcon.2019.102974.
De Caceres, M., Martin-StPaul, N., Turco, M., Cabon, A. & Granda, V. (2018). Estimating daily meteorological data and downscaling climate models over landscapes. Environmental Modelling and Software, 108,186-196, doi:10.1016/j.envsoft.2018.08.003.
Dou, X. & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 95-106, doi:10.1016/j.compag.2018.03.010.
Douna V., Barraza, V., Grings, F., Huete, A., Restrepo-Coupe, N.& Beringer, J. (2021). Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach. Journal of Arid Environments, 191, 104513, doi:10.1016/j.jaridenv.2021.104513
Ebrahimipak, A., Tafteh, A., Egdarnejad, A., & Asadi Kapourchal, S. (2019). Determination of monthly evapotranspiration coefficients of winter wheat by different methods of estimating evapotranspiration and evaporation pan in Qazvin plain. Irrigation and Water Engineering, 32, 105-119. [In Persian]
Eslamian, S., Khordadi, M.J., & Abedi-Koupai, J. (2011). Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78(3-4), 188-194. doi:10.1016/j.gloplacha.2011.07.001.
Fan, J., Wu, L., Zhang, F., Xiang, Y., & Zheng, J. (2016). Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of Hydrology, 542, 923-937. doi:10.1016/j.jhydrol.2016.09.060.
Fawzy, H. E.D., Sakr, A., El-Enany, M., & Moghazy, H.M. (2021). Spatiotemporal assessment of actual evapotranspiration using satellite remote sensing technique in the Nile Delta, Egypt. Alexandria Engineering Journal, 60(1), 1421-1432, doi:10.1016/j.aej.2020.11.001.
Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376-383. doi:10.1016/j.jhydrol.2016.02.053.
Frotan, M., & Salahi, B. (2023). Climatic zoning of Ardabil province using multivariate methods. Journal of Environmental Science Studies, 8(1), 6238-6247. doi: 10.22034/jess.2022.369206.1903.
Goyal, M.K., Gupta, A.K. & Gupta (Eds.), A. (2022). Hydro-Meteorological extremes and disasters, disaster resilience and green growth. Springer, Singapore.
Hu, X., Zhao, J., Sun, S., Jia, C., Zhang, F., Ma, Y., Wang, K., & Wang, Y. (2023). Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation. Agricultural Water Management, 275, 107991, doi: 10.1016/j.agwat.2022.107991.
Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085
Khari, D., Agderneghad, A., Ebrahimi Pak, N. A. (2023). Comparison of artificial intelligence models and empirical models in estimating reference evapotranspiration (case study: Ramhormoz synoptic station). Water and Soil Management and Modeling, 3(2), 112-124. doi:10.22098/mmws.2022.11293.1117 [In Persian]
Kim, N., Kim, K., Lee, S., Cho, J., & Lee, Y. (2020). Retrieval of daily reference evapotranspiration for croplands in South Korea using machine learning with satellite images and numerical weather prediction data. Remote Sensing, 12(21), 364. doi:10.3390/rs12213642.
Landeras, G., Ortiz-Barredo, A., & Javier López, J. (2008). Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management, 95,553-564. doi:10.1016/j.agwat.2007.12.011.
Ling, X., Zhongqiu, L.an & Binbin, D. (2021). A Method for Predicting the Quality of Slabs Based on GA-RF Algorithm, IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 2021, pp. 1637-1642, doi: 10.1109/ICIEA51954.2021.9516413.
Mahmoudinezhad, V., Honarbakhsh, A., Abdollahi, K., & Decaro, D. (2024). Evaluation of relationships between meteorological parameters and actual evapotranspiration using regression and hierarchical clustering (case study: Castelvetrano, Italy). Water and Soil Management and Modeling, 4(3), 159-172. doi:10.22098/mmws.2023.12941.1289 [In Persian].
Sultan Abdullah, S., Malek, M.A., Sultan Abdullah, N., Kisi, O., & Siah Yap, K. (2015). Extreme Learning Machines: A new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184-195, doi:10.1016/j.jhydrol.2015.04.073.
Talebi, H., Samadianfard, S., & Kamran, K.V. (2023a). Investigating the roles of different extracted parameters from satellite images in improving the accuracy of daily reference evapotranspiration estimation. Applied Water Science, 13(2), 1-11. doi:10.1007/s13201-022-01862-6.
Talebi, H., Samadianfard, S., & Kamran, K.V. (2023b). A novel method based on Landsat 8 and MODIS satellite images to estimate monthly reference evapotranspiration in arid and semi-arid climates. Water and Soil Management and Modeling, 3(3),180-195. doi:10.22098/mmws.2023.12048.1198 [In Persian].
Wang, S., Lian, J., Peng, Y., Hu, B., & Chen, H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220-230. doi:10.1016/j.agwat.2019.03.027.
Yang, L., Feng, Q., Adamowski, J.F., Yin, Z., Wen, X., Wu, M., Jia, B., & Hao, Q. (2020). Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA. Atmospheric Research, 238,104868. doi:10.1016/j.atmosres.2020.104868.