The effects of climate change on precipitation and temperature using SSP scenarios (case study: Fars province)

Document Type : Research/Original/Regular Article

Authors

1 Master's, Department of Soil Conservation and Watershed Management Research, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

2 Associate Professor, Department of Soil Conservation and Watershed Management Research, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

3 Assistant Professor, Department of Soil and Water Research, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

Abstract

Introduction

Climate is one of the most important ecological factors, and its changes are currently the most important threat to sustainable development. The phenomenon of climate change causes different processes in the atmosphere and the earth. Phenomena such as rising sea levels, changes in meteorological variables such as temperature and precipitation, impact on surface currents, occurrence of floods and droughts, and changes in air currents and storms are only part of the effects of climate change. Therefore, it is necessary to model the future conditions of the climate to know the future conditions. There are various methods for simulating and predicting climate variables in future periods under the influence of climate change, the most reliable of which is the use of General Circulation Model (GCM) data. GCM models are only able to simulate the data of the atmospheric general circulation model at large levels. Even if global climate models are set up with high technical power to predict the future, the need to downscale the results of these models at station scales is felt. Therefore, in this research, the effects of climate change on the threshold values of precipitation and temperature have been evaluated using SSP scenarios.

Materials and Methods

General circulation models (GCMs) can provide the best information about the response of the atmosphere to increasing greenhouse gas concentrations. In this research, the climatic data of three synoptic stations of Abadeh, Shiraz and Lar, related to Fars province, were used. The data from three models ACCESS-ESM1-5, CNRM-CM6-1, and MRI-ESM2-0 are used from the general rotation models of the sixth report. Daily precipitation and maximum temperature data from 1990 to 2017 were used. Using the statistical model LARS-WG and three scenarios SSP126, SSP245 and SSP585, precipitation and maximum temperature have been downscaling. In this model, the process of generating artificial weather data is done in three parts: model calibration, model validation, and weather data generation. To evaluate the LARS-WG model, coefficient of determination (R2), root mean square error (RMSE) test statistics have been used. To investigate the relationship between precipitation and maximum temperature with different return periods, Gumbel distribution was used. The appropriate distribution for maximum precipitation, temperature, and flood data is Gumble's method; In this study, the distribution of precipitation and maximum temperature for different return periods is presented. In this method, the mean value and standard deviation of the data and the length of the data return period are considered to be the most important effective factors in estimating the maximum values.

Results and Discussion

Validation of the LARS-WG model was done by comparison between observation data and generated data. To evaluate the efficiency of the model, error test criteria have been used. The results show that the LARS-WG model was able to estimate the maximum temperature and precipitation. The accuracy of the modeling in the maximum temperature parameter has been more appropriate than the precipitation ratio. The monthly precipitation changes of the near future period (2021-2040) compared to the base period (1990-2017) of the three ACCESS-ESM1-5, CNRM-CM6-1 and MRI-ESM2-0 models of Abadeh synoptic station showed the amount of precipitation in April, May, June, August, and September has had a decreasing trend compared to the base period. The amount of precipitation in January, February, and December has also increased compared to the base period. At Abadeh station, it shows an increase in temperature under all three models and scenarios in the near future. At the Shiraz synoptic station, precipitation in April, July, and September has decreased compared to the base period. The amount of precipitation in January, February, and March has also increased compared to the base period. The maximum temperature has also increased. At the Lar synoptic station, the precipitation in April, September, and October has decreased compared to the base period. The amount of precipitation in January, February, and March has also increased compared to the base period. The maximum temperature has also increased. The Gumbel distribution output also showed that in all three stations, in a specific return period, precipitation and maximum temperature will increase compared to the base period. Examining the Gumbel distribution of precipitation values also shows an increase in precipitation in the specified return period in the ACCESS-ESM1-5 model.

Conclusion

The changes in the maximum temperature of the near future period (2021-2040) compared to the base period (1990-2017) were incremental in three stations and three models. In Abadeh synoptic station, the maximum temperature changes show an increase in the maximum temperature in the three scenarios SSP126, SSP245, and SSP585, respectively 1.57, 1.59, and 1.63 °C, and the amount of precipitation in the spring and summer seasons is decreasing and Winter precipitation is estimated to be increasing compared to the base period. In the Shiraz synoptic station, the maximum temperature shows an increase in the maximum temperature in the three scenarios SSP126, SSP245, and SSP585, 1.37, 1.50, and 1.48 °C, respectively, and in the ACCESS-ESM1-5 model, in all three scenarios, the amount It is estimated that the winter precipitation is decreasing and the amount of spring precipitation is increasing. The changes in the maximum temperature of Lar synoptic station show an increase in the maximum temperature in the three scenarios SSP126, SSP245, and SSP585, respectively 1.23, 1.37, and 1.28 °C. In the CNRM-CM6-1 model, the winter precipitation of this station is estimated to be a decreasing trend. Fall precipitation is also estimated in the MRI-ESM2-0 model in two scenarios, SSP126 and SSP585, but the ACCESS-ESM1-5 model has estimated an increase in the amount of precipitation in the Lar synoptic station in all seasons and scenarios. The Gumbel distribution output also showed that in all three stations, in a specific return period, precipitation and maximum temperature will increase compared to the base period. Therefore, extreme and heavy precipitation and the increase in the frequency of extreme events related to it, such as floods and droughts, are among the results of global warming.

Keywords

Main Subjects


منابع
ابراهیمی، نسرین، زرین، آذر، مفیدی، عباس، و داداشی‌رودباری، عباسعلی (1402). پیش‌نگری بارش‌های فرین در حوضه دریاچه ارومیه تحت شرایط تغییر اقلیم. آب و خاک. 37(5)، 769-785.  doi:10.22067/JSW.2023.81891.1270
ایرانشاهی، معین، ابراهیمی، بهروز، یوسفی، حسین و مریدی، علی (1401). بررسی اثرات تغییر اقلیم بر وضعیت دما و بارش با استفاده از شبکه عصبی و گزارش ششم IPCC (مطالعه موردی: ایستگاه‎های الشتر و خرم‎آباد). مدیریت آب و آبیاری، 12(4)، 845-821. doi:10.22059/jwim.2022.346796.1009
حجازی‌زاده، زهرا، اکبری، مهری، ساسانپور، فرزانه و حسینی، علیرضا، و محمدی، نیلوفر (1401). بررسی اثرات تغییر اقلیم بر بارش‌های سیل آسا در استان تهران. مدل‌سازی و مدیریت آب و خاک، 2(2)، 87-105.
doi: 10.22098/mmws.2022.9958.1075
روشنی، ادیب، و حمیدی، مهدی (1400). پیش‌بینی اثرات سناریوهای تغییر اقلیم بر دما و بارش بر اساس مدل‌های CMIP6 (مطالعه موردی: ایستگاه ساری). مدیریت آب و آبیاری، 11(4)، 781-795. doi:10.22059/jwim.2022.330603.920  
شریفی پیچون، محمد، بهزادی، زهرا و محمدی، فروغ (1401). ارزیابی زمانی– مکانی روند خشک‌سالی و اثرات آن بر تغییرات پوشش گیاهی در استان فارس. مطالعات جغرافیایی مناطق خشک، 13(50)، 57-40.
doi: 10.22034/jargs.2023.375644.1000
صف شکن، فرشید، آخوندعلی، علی محمد، حقیقی، علی و زارعی، حیدر (1396). بررسی اثر تغییر اقلیم بر جریان ورودی به آبگیر سد درودزن در استان فارس طی دوره‌های آتی. مهندسی منابع آب، 83-97.
dor:20.1001.1.20086377.1396.10.34.8.8
عساکره، حسین (1381). مدل‌های گردش عمومی جو.  اطلاعات جغرافیایی سپهر، 11(41)، 23-21.
dor: 20.1001.1.25883860.1381.11.41.6.8
کهنسال، فرانک، نورانی، وحید و شرقی، الناز (1402). اثرات تغییر اقلیم بر میزان بارش در حوضه‌ی دریاچه‌های ارومیه در سناریوهای مختلف تغییر اقلیم. سیزدهمین کنگره بین‌المللی مهندسی عمران، تهران.
 
References
Asakareh, H. (2002). Models of General Circulation of Atmosphere. Geographical Data (SEPEHR), 11(41), 21-23. dor:20.1001.1.25883860.1381.11.41.6.8. [In Persian]
Chen, H., Zhao, Y., Feng, H., Li, H., & Sun, B. (2015). Assessment of climate change impacts on soil organic carbon and crop yield based on long-term fertilization applications in Loess Plateau, China. Plant and Soil, 390, 401-417. doi:10.1007/s11104-014-2332-1.
Ebrahimi, N., Zarrin, A., Mofidi, A., & Dadashi-Roudbari, A. (2023). Projected precipitation extremes in Lake Urmia Basin under Climate Change. Water and Soil, 37(5), 769-785. doi: 10.22067/jsw.2023.81891.1270. [In Persian]
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. doi: 10.5194/gmd-9-1937-2016, 2016.
Feyissa, G., Zeleke, G., Bewket, W., & Gebremariam, E. (2018). Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate, 6(3), 58. doi:10.3390/cli6030058
Guobin, F., Stephen, P. C., Francis, H.S.C., Jin, T., Hongxing, Z., Andrew, J. F., Wenbin, L., & Sergey, K. (2013). Modelling runoff with statistically downscaled daily site, gridded and catchment rainfall series. Hydrology, 492, 254-265. doi: 10.1016/j.jhydrol.2013.03.041
Hassan, Z., Shamsudin, S., & Harun, S. (2014) Application of SDSM and LARS-WG for Simulating and Downscaling of Rainfall and Temperature. Theoretical and Applied Climatology, 116, 243-257.
doi:10.1007/s00704-013-0951-8.
Hejazizadeh, Z., Akbari, M., Sasanpour, F., Hosseini, A., & Mohammadi, N. (2022). Investigating the effects of climate change on torrential rains in Tehran province. Water and Soil Management and Modelling, 2(2), 87-105. doi:10.22098/mmws.2022.9958.1075. [In Persian]
Iranshahi, M., Ebrahimi, B., Yousefi, H., & Moridi, A. (2023). Investigating the Effects of Climate Change on Temperature and Precipitation Using Neural Network and CMIP6 (Case Study: Aleshtar and Khorramabad Stations). Water and Irrigation Management, 12(4), 821-845. doi:10.22059/jwim.2022.346796.1009. [In Persian]
Jahangir, M. H., Haghighi, P., & Danehkar, S. (2022). Downscaling climate parameters in Fars province, using models of the fifth report and RCP scenarios. Ecological Informatics, 68, 101558. doi: 10.1016/j.ecoinf.2022.101558
Kohensal, F., Noorani, V., & Sharqi, E. (2023), The effects of climate change on the amount of precipitation in the Urmia lakes basin in different scenarios of climate change. The 13th International Congress of Civil Engineering, Tehran. [In Persian]
Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Dew Rauten bach, C.J.Yvette, B., & Adebayo, O.A. (2014). The nature of rainfall in the maindrainage sub-basins of Uganda. Hydrological Sciences, 59(2), 278-299. doi:10.1080/02626667.2013.804188
O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, k., Rothman, D.S., van Ruijven, B.J., van Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180. doi: 10.1016/j.gloenvcha.2015.01.004.
Pholkern, K.; Saraphirom, P.; & K. Srisuk. (2018). Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Science of The Total Environment, 633, 1518-1535. doi: 10.1016/j.scitotenv.2018.03.300
Roshani, A., & Hamidi, M. (2022). Forecasting the effects of climate change scenarios on temperature & precipitation based on CMIP6 models (Case study: Sari station). Water and Irrigation Management, 11(4), 781-795. doi: 10.22059/jwim.2022.330603.920. [In Persian]
Safshekan, F., Akhoond Ali, A. M., Haghighi, A., & Zarei, H. (2017). Climate Change Impact on the Future Inflow of the Doroodzan Reservoir in the Province of Fars. Water Resources Engineering, 10(34), 83-97. dor:20.1001.1.20086377.1396.10.34.8.8. [In Persian]
Semenov, M.A., & Barrow, E.M., (2002): LARS-WG a stochastic weather generator for use in climate impact studies. User Manual, Version3.0.
Sharifi Paichoon, M., Behzadi, Z., & Mohamadi, F. (2023). Temporal-spatial evaluation of the drought process and its effects on vegetation changes in Fars province. Arid Regions Geographic Studies, 13(50), 57-40. doi:10.22034/jargs.2023.375644.1000. [In Persian]
Stouffer R. J. Eyring V. Meehl G. A. Bony S. Senior C. Stevens B. & Taylor K. E. (2017). CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98(1), 95-105. doi: 10.1175/BAMS-D-15-00013.1.
Wilby, R.L., & Dawson, C.W. (2004). Using SDSM version 4.2- A decision support tool for the assessment of regional climate change impacts. User manual, 94 pp