Using of Hydrograph Analysis Methods for Base Flow Estimation (Case Study: Silakhor-Rahimabad Watershed)

Document Type : Research/Original/Regular Article

Authors

1 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran

2 Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad

Abstract

Introduction

A significant portion of the flow of perennial rivers originates from groundwater. The changes that occur in a watershed due to natural and human factors are indicative of physical changes and artificial mismanagement of water resources. These situations change the contribution of groundwater to streamflow. Therefore, understanding baseflow allows for the identification of the potential and dynamics of the groundwater system. In principle, the separation of base flow and quick flow is difficult to distinguish from the measured discharge data in a river, because the measured discharge in a river is a combination of the two flow components. Separation of riverbed flow is essential for water resources management and can significantly contribute to the calculation of water availability in the dry season (relatively short discharge period). In addition, comparing different watersheds in terms of flow recession characteristics can provide valuable information about storage and recharge properties in the watershed. The main objective of this research is to estimate base flow using several hydrograph analysis techniques, as there has been neither organized research on groundwater resources at the watershed level nor studies on different methods for estimating the base flow contribution in these streams.

Materials and Methods

The current research includes estimating base flow from daily streamflow data using the Flow Duration Curve (FDC) technique, the Web-based Hydrograph Analysis Tool (WHAT), and the Baseflow Index (BFI+) program. Using the FDC technique, the long-term annual average fraction of flow from base flow is estimated after obtaining the values of Q90 and Q50. The Web-based Hydrograph Analysis Tool includes three algorithms: the local minimum algorithm, the one-parameter algorithm, and the two-parameter algorithm. The web-based WHAT system provides an efficient tool for hydrologic model calibration and validation. Baseflow information from the WHAT system can also play an important role in sustainable groundwater and surface water management, including irrigation and industrial uses, and estimating pollutant loads from both baseflow and direct runoff. The Baseflow Index program also uses the following algorithms: Fix Interval, Sliding Interval, Local Minima, Lynne-Hollick, Chapman, One Parameter Algorithm, Two Parameter Algorithm, Exp. Weighted Moving Average, Eckhardt, BFLOW, IHACRES, and Fure & gupta. For this purpose, daily streamflow and precipitation data were obtained from the Regional Water Organization of Lorestan Province. The time series of data for streamflow and precipitation was selected from 2009 to 2019.

Results and Discussion

The results of the data analysis indicate that most of the automatic filter techniques used with assumed parameters have overestimated the baseflow above the average compared to the FDC. In addition, the FDC analysis showed that the contribution of groundwater storage to streamflow was below average. The WHAT automatic digital filter tool has been widely used for long-term baseflow separation using a two-parameter digital filter (α and BFImax). In this study, the BFImax value was set to 0.80 for alluvial streams and the filter parameter (α) was set to 0.995 for the Rahim Abad stream. The BFI values for the Rahim Abad River are consistent and are estimated to be around 45% for the entire watershed. The results obtained from BFI+ showed that the calculated baseflow values for the one-parameter and two-parameter algorithms, except for RDF-IHACRES, BF-BFLOW, BF-Chapman, and BF-Furey, were higher than the mean flow. In addition, the long-term baseflow to flow ratio or BFI is equal to the ratio of Q90/Q50. This ratio indicates the discharge of groundwater or other delayed sources to the streamflow. Hydraulic structures built upstream of hydrological gauging stations can affect flow conditions. These BFI values are related to the geology and hydrogeology of the watershed. The Q90/Q50 ratio has an annually varying decreasing and increasing trend for flow, indicating that the contribution of groundwater to streamflow varies from year to year with decreasing and increasing changes. Finally, by employing all methods, the range of groundwater contribution to Rahim Abad streamflow was obtained between 2 and 84 percent, and its average value was also determined to be 63 percent.

Conclusion

Considering the average of all BFI values obtained from all methods with values less than the mean, an overall average of 45% was obtained, which provided a better estimate for the entire watershed. In this regard, the modified RDF methods (one-parameter and two-parameter algorithms), IHACRES, BF-BFLOW, BF-Chapman, and BF-Furey were selected as the top algorithms for the entire watershed. Further studies are necessary for future groundwater resource problems in the watershed. The interaction of groundwater and surface water and pollution problems, water quality management of rivers, estimation of groundwater potential using other techniques, and estimation of the contribution of groundwater under climate change are among those that can be mentioned. Introduction of suitable methods of separation of daily flow in hydrological modeling, regional analysis of minimum flows and determination of base flow share can be used. It is hoped that the output of this study will help the planning, development and management of water resources in the Silakhor watershed.

Keywords

Main Subjects


منابع
بیات‌ورکشی، مریم، طاهری‌نیا، بهناز، حسینیان، کاظم، فصیحی، روژین (1403). پیش‌بینی جریان رودخانه با کاربست مدل‌های هوشمند عصبی و LARS-WG (مطالعه موردی: حوضه آبریز کشکان). مدل‌سازی و مدیریت آب و خاک، 4(3)، 225-238.  doi:10.22098/mmws.2023.12827.1281
زارع بیدکی، رفعت، قرهی، ن نسرین، و مهدیان‌فرد، مریم (1399). مقایسه روش‌های جداسازی آب ‌پایه از رواناب مستقیم در حوزه‌ی آبخیز دورود. محیط‌ زیست و مهندسی آب، 3(5)، 200-212. doi:10.22034/jewe.2019.187507.1321
زارع بیدکی، رفعت، مهدیان فرد، مریم، هنربخش، افشین، و زینی‌وند، حسین (1394). برآورد جریان پایۀ رودخانۀ تیرۀ لرستان به منظور ارزیابی جریان زیست محیطی. اکوهیدرولوژی، 2(3)، 275-287. doi:10.22059/ije.2015.57297
سیف، علی، قاسمیه، هدی، زینی‌وند، حسین، و زند، مهران (1399). شبیه‌سازی نقشه کاربری اراضی سال 2026 با استفاده از مدل CLUE-s در حوزه آبخیز رحیم‌آباد. مهندسی و مدیریت آبخیز، 12(4)، 1102-1121. doi:10.22092/ijwmse.2019.126961.1685.
شرفی، سیامک، آرین تبار، حبیب، و کمالی، زهرا (1398). بررسی تغییرات مکانی- زمانی مورفولوژی رودخانه سیلاخور در استان لرستان. پژوهش‌های ژئومورفولوژی کمی، 8(3)، 115-131. dor:20.1001.1.22519424.1398.8.3.7.2
کاظمی، رحیم (1399). بررسی تحقیقات جریان پایه در ایران و جهان. مهندسی و مدیریت آبخیز، 4(13)، 671-650. doi:10.22092/ijwmse.2021.341719.1767.
مومنه، صادق (1401). مقایسۀ عملکرد مدل‌های هوش مصنوعی با مدل IHACRES در مدل‌سازی جریان روزانه. مدل‌سازی و مدیریت آب و خاک، 2(3)، 1-16. doi:10.22098/MMWS.2022.9972.1076
مهری، سونیا، مصطفی‌زاده، رئوف، اسمعلی عوری، اباذر، و قربانی، اردوان (1398). مقایسه روش‌های ترسیمی و فیلترهای عددی برگشتی در تفکیک جریان پایه در تعدادی از رودخانه‌های استان اردبیل. پژوهش‌های حفاظت آب ‌و خاک، (26)4، 95-113. doi:10.22069/JWSC.2019.10737.2514
نادری، مهین، شیخ، واحدبردی، بهره‌مند، عبدالرضا، کمکی، چوقی بایرام، و قانقرمه، عبدالعظیم (1402). تحلیل تغییرات رژیم جریان آب رودخانه‌ای با استفاده از شاخص‌های تغییرات هیدرولوژیکی (مطالعة موردی: حوزة آبخیز حبله‌رود). مدل‌سازی و مدیریت آب و خاک، 3(3)، 1-19. doi:10.22098/mmws.2022.11430.1129
 
References
Al-Faraj, F.A., & Scholz, M. (2014). Incorporation of the flow duration curve method within digital filtering algorithms to estimate the base flow contribution to total runoff. Water Resources Management, 28, 5477-5489. doi: 10.1007/s11269-014-0816-7
Arnold, J.G., & Allen, P.M. (1999). Automated methods for estimating baseflow and ground water recharge from streamflow records 1. Journal of the American Water Resources Association, 35(2), 411-424. doi:10.1111/j.1752-1688.1999.tb03599.x
Bayatvarkshi, M., Taherinia, B., Hosseinian, K., & Fasihi, R. (2024). Forecasting river flow using neural intelligent models and LARS-WG models (Case study: Kashkan Watershed). Water and Soil Management and Modeling, 4(3), 225-238. doi:10.22098/mmws.2023.12827.1281. [In Persian]
Bayou, W.T., Wohnlich, S., Mohammed, M., & Ayenew, T. (2021). Application of hydrograph analysis techniques for estimating groundwater contribution in the Sor and Gebba streams of the Baro-Akobo river Basin, southwestern Ethiopia. Water, 13(15), 2006. doi:10.3390/w13152006
Berhail, S. (2022). Performance evaluation of an automated method for hydrograph separation in Mellah catchment, Northeastern Algeria. International Journal of Hydrology Science and Technology, 14(3), 251-267. doi:10.1504/IJHST.2022.10050153
Boughton, W.C. (1993). A hydrograph-based model for estimating water yield of ungauged catchments. In Hydrology and Water Resources Symposium, Newcastle, IEAust, Pub. 93/14, 317-324
Boussinesq, J. (1904). Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources. Journal de Mathématiques Pures et Appliquées10, 5-78. http://eudml.org/doc/235283
Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes13(5), 701-714. doi: 10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
Chapman, T.G. (1991). Comment on evaluation of automated techniques for base flow and recession analyses, by RJ Nathan and TA McMahon. Water Resources Research, 27(7), 1783 -1784
Chapman, T.G., & Maxwell, A.I. (1996). Baseflow separation – comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Pub. 96/05, 539-545
Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes: An International Journal, 19(2), 507-515. doi:10.1002/hyp.5675
Furey, P.R., & Gupta, V.K. (2003). Tests of two physically based filters for base flow separation. Water Resources Research39(10), 1-11. doi:10.1029/2002WR001621, 2003
Gonzales, A.L., Nonner, J., & Heijkers, J. (2009). Uhlenbrook, S. Comparison of different base flow separation methods in a lowland catchment. Hydrology and Earth System Sciences Discussions, 13, 34. doi:10.5194/hess-13-2055-2009
Gregor, M. (2010). User’s Manual: BFI+ 3.0. HydrOffice Software Package, Water Science. Available online: https://hydrooffice. org/Tool/BFI (accessed on 10 May 2021).
Hall, F.R. (1968). Base‐flow recessions-A review. Water Resources Research, 4(5), 973-983.
Indarto, I., Ratnaningsih, A., & Wahyuningsih, S. (2017). Calibration of six recursive digital filters for baseflow separation in east java. Journal of Engineering and Applied Sciences, 12(12), 3772-3778. http://repository.unej.ac.id/xmlui/handle/123456789/106089
Jakeman, A.J., & Hornberger, G.M. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637-2649. doi:10.1029/93WR00877
Kazemi, R. (2022). Investigation of base flow researches in Iran and the world. Watershed Engineering and Management, 13(4), 650-671. doi:10.22092/ijwmse.2021.341719.1767. [In Persian]
Lim, K.J., Engel, B.A., Tang, Z., Choi, J., Kim, K. S., Muthukrishnan, S., & Tripathy, D. (2005). Automated web GIS based hydrograph analysis tool, WHAT 1. Journal of the American Water Resources Association41(6), 1407-1416. doi:10.1111/j.1752-1688.2005.tb03808.x
Linsley, R.K., Kohler, M.A., & Paulhus, J.L.H. (1982). Hydrology for engineers. 3rd ed. New York, McGraw-Hill.
Lott, D.A., & Stewart, M.T. (2016). Base flow separation: A comparison of analytical and mass balance methods. Journal of Hydrology, 535, 525-533. doi:10.1016/j.jhydrol.2016.01.063
Lyne, V., & Hollick, M. (1979). Stochastic time-variable rainfall-runoff modelling. In Institute of Engineers Australia National Conference. Barton, Australia: Institute of Engineers Australia. 89-93. doi: 10.1007/s12665-013-2358-3
Mau, D.P., & Winter, T.C. (1997) Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Groundwater, 35(2), 291-304. doi: 10.1111/j.1745-6584.1997.tb00086.x
Mehri, S., Mostafazadeh, R., Esmali-Ouri, A., & Ghorbani, A. (2019). Graphical and recursive digital filter techniques in the separation of base flow, A comparison in Ardabil Province rivers. Journal of Water and Soil Conservation, 26(4), 95-113. doi:10.22069/JWSC.2019.10737.2514. [In Persian].
Mohammed, R., & Scholz, M. (2018). Flow-duration curve integration into digital filtering algorithms for simulating climate variability based on river baseflow. Hydrological Sciences Journal63(10), 1558-1573. doi:10.1080/02626667.2018.1519318.
Momeheh, S. (2022). Performance comparison of artificial intelligence models with IHACRES model in daily streamflow modeling. Water and Soil Management and Modeling, 2(3), 1-16. doi:10.22098/MMWS.2022.9972.1076. [In Persian].
Naderi, M., Sheikh, V., Bahrehmand, A., Komaki, CH., & Ghangermeh, A. (2023). Analysis of river flow regime changes using the indicators of hydrologic alteration (Case study: Hableroud watershed). Water and Soil Management and Modeling, 3(3), 1-19. doi:10.22098/mmws.2022.11430.1129. [In Persian].
Nam, S., Chun, K.W., Lee, J.U., Kang, W.S., & Jang, S.J. (2021). Hydrograph separation and flow characteristic analysis for observed rainfall events during flood season in a forested headwater stream. Korean Journal of Ecology and Environment, 54(1), 49-60. doi:10.11614/KSL.2021.54.1.049
Nathan, R.J., & McMahon, T.A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), 1465-1473. doi:10.1029/WR026i007p01465
Ratnasari, D., Indarto, S.W., Ratnasari, D., & Wahyuningsih, S. (2015). Studi baseflow menggunakan perbandingan 6 metode RDF (Recursive Digital Filter). Berkala Ilmiah Teknologi Pertanian. 1(1), 1-7. http://repository.unej.ac.id/handle/123456789/69075
Rimmer, A., & Hartmann, A. (2014). Optimal hydrograph separation filter to evaluate transport routines of hydrological models. Journal of Hydrology, 514, 249-257. doi:10.1016/j.jhydrol.2014.04.03
Seif, A., Ghasemieh, H., Zeinivand, H., & Zand, M. (2021). Simulation of land use map in 2026 using CLUE-s model in Rahim-Abad Basin. Watershed Engineering and Management, 12(4), 1102-1121. doi:10.22092/ijwmse.2019.126961.1685. [In Persian]
Shao, G., Zhang, D., Guan, Y., Sadat, M.A., & Huang, F. (2020). Application of different separation methods to investigate the baseflow characteristics of a semi-arid sandy area, Northwestern China. Water, 12(2), 434. doi:10.3390/w12020434
Sharafi, S., Sakvand, H., & Kamali, Z. (2020). Investigation of spatial and temporal variation of Silakhor River morphology in Lorestan province. Quantitative Geomorphological Research, 8(3), 115-131. dor:20.1001.1.22519424.1398.8.3.7.2 [In Persian]
Smakhtin, V.U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240, 147–186. doi:10.1016/S0022-1694(00)00340-1
Tallaksen, L.M. (1995). A review of baseflow recession analysis. Journal of Hydrology165(1-4), 349-370. doi:10.1016/0022-1694(94)02540-R
Tularam, G. A. & Ilahee, M. (2008). Exponential smoothing method of base flow separation and its impact on continuous loss estimates. American Journal of Environmental Sciences, 4(2), 136-144. doi:10.3844/ajessp.2008.136.144
Yang, W., Xiao, C., Zhang, Z., & Liang, X. (2021). Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?. Hydrology and Earth System Sciences, 25(4), 1747-1760. doi:10.5194/hess-25-1747-2021
Zare Bidaki, R., Gharahi, N., & Mahdianfard, M. (2019). Comparison of separation methods for baseflow from direct runoff in Doroud Basin, Lorestan, Iran. Environment and Water Engineering, 5(3), 200-212. doi:10.22034/jewe.2019.187507.1321. [In Persian]
Zare Bidaki, R., Mahdianfard, M., Honarbakhs, A., & Zeinivand, H. (2015). base flow estimation in Tireh Dorood River in order to environmental flow assessmen. Iranian Journal of Ecohydrology, 2(3), 275-287. doi:10.22059/ije.2015.57297. [In Persian]