Removal of Cadmium from Polluted Water Environments using Zero Iron Nanoparticles

Document Type : Research/Original/Regular Article

Authors

1 Former M.Sc. Student, Irrigation and Drainage Discipline, Agricultural Engineering Research Institute (AERI); Agricultural Research, Education and Extension Organization (AREEO); Karaj, Iran

2 Associate Professor, Soil Sciences, Soil and Water Research Institute, Karaj, Iran

3 Assistant Professor, Irrigation and Drainage Discipline, Agricultural Engineering Research Institute (AERI); Agricultural Research, Education and Extension Organization (AREEO); Karaj, Iran

Abstract

As a result of the development and expansion of cities, growth and development of industries and technology, various pollutants have entered the environment. The pollutions resulting from the discharge of industrial effluents, consumption of fuel, discharge of municipal sewage and the use of sludge from sewage treatment as a soil fertilizer have caused harmful effects affecting humans and living creatures and changing ecosystems. Meanwhile, as a heavy metal, cadmium is very important due to its high mobility and toxicity in low concentrations.

Various methods have been developed to remove heavy metals from contaminated water and soil, and surface adsorption is one of the most efficient methods. Various surface adsorbents such as clays, zeolites, dry plants, agricultural waste materials, biopolymers, metal oxides, microorganisms, and volcanic ash have been used to remove heavy metals. Iron nanoparticles with zero charge (nZVI) is a new technology that has successfully been used to remove various metal ions. Nanoparticles are special adsorbents that are used for remedial purposes due to the presence of significant specific surface area that leads to high density of exchange sites and metal removal capacity. Basically, iron nanoparticles have been introduced as effective reductants and catalysts for a wide range of common pollutants such as organochlorine compounds and metal ions.

Cleaning water environments of heavy metals can happen as a result of surface absorption by absorbent materials such as nanoparticles. The aim of the present study is to investigate the effect of iron nanoparticles in removing cadmium from water environments.



Materials and methods

Nanoscale iron particles with zero charge can be prepared in aqueous environments by reduction of ferric iron or ferrous iron by sodium borohydride or by decomposition of pentacarbonyl iron in organic solvents or argon. In this study, the synthesis of iron nanoparticles by sodium borohydride has been used. For the synthesis of nanoparticles, 7.823 grams of iron sulfate II (FeSo4.7H2O) was dissolved in 200 ml of distilled water in the presence of ethanol. After setting the pH of the suspension at 6.8, 0.8 grams of starch and 1.8 grams of sodium borohydride were added to the solution. The nanoparticles were separated from the solution using a centrifuge and washed with ethanol. All steps were performed in the vicinity of nitrogen gas and finally the synthesized nanoparticles were dried under nitrogen gas. Finally, by using microscopic methods, images with very high magnification of the material are obtained. In this study, the shape and morphology of produced nanoparticles were investigated using SEM.

To investigate the effect of nanoparticle and pollutant concentration on removing efficiency, factorial statistical design with cadmium concentration treatment at 9 levels (10, 25, 50, 75, 100, 200, 300, 400 and 500 mg/liter), and treatment with zero amount of nano iron in three levels (0.025, 0.05 and 0.1 g) was applied. The effect of contact time on removal efficiency was investigated at 10, 30 minutes and 1, 4, 8, and 24 hours, and the effect of alkalinity was investigated at pHs of 4, 6, 8, and 10. In all stages, the concentration of cadmium in the purified solution was measured using an atomic absorption device.



Results and discussion

With the passage of time, the amount of absorption or removal efficiency increases, but after 4 hours, its changes are not statistically significant. The increase in removal efficiency with the passage of time is due to the fact that with the passage of time the formation of holes and corrosion on the surface of iron increases, as a result of which the cross-sectional area of absorption and removal efficiency also increases. In addition, the active sites for cadmium absorption change and the number of products resulting from the reaction of iron in the water environment increases, which also causes an increase in the removal efficiency with increasing retention time.

The results showed that the absorption efficiency decreases with the increase of the initial concentration of cadmium, which means that iron nanoparticles have a limited capacity to absorb cadmium. Examining the effect of the initial concentration of the ions of the adsorbed material showed that firstly, the more concentrated the solution is in terms of the number of ions, the better the absorption is, and secondly, the number of active sites for absorption gradually increases with the increase in the process time and the increase in the number of ions absorbed on the adsorbent decreases, so that the rate of absorption decreases significantly, leading to the formation of balance in absorption.

The greater the amount of iron nanoparticles, the greater the number of active surfaces participating in metal absorption, and as a result, it holds the absorbed cadmium with greater force. The results of placing cadmium-contaminated nanoparticles in distilled water (Figure 5) showed that in high doses of iron nanoparticles, a smaller amount of cadmium was absorbed and re-entered the environment. With the increase in the initial concentration of cadmium, its release has also increased, because, as mentioned above, the number of occupied sites has increased and the amount of holding energy per ion has decreased, causing release.



Conclusion

As the concentration of the pollutant increases, due to the limited capacity of the adsorbent, the efficiency of absorption decreases, which means that with the saturation of the absorption sites, it is not possible to absorb more of the pollutant. On the other hand, with the increase in the amount of adsorbent, the absorption efficiency increases due to the increase in the number of absorption sites. Also, by increasing the amount of absorbent and pollutant, the possibility of collision between cadmium and iron nanoparticles and the occurrence of absorption reactions increases. The high ratio of absorbent to pollutant causes a stronger bond and as a result less pollutant is released. When the adsorption surfaces of nanoparticles are occupied by the pollutant, it is no longer possible to release the pollutant and reuse these absorption surfaces, and in general, nanoparticles of iron have zero and cannot be used more than once to clean cadmium from the water environment.

Keywords

Main Subjects


منابع
امیری، محمد جواد (1402). حذف یون­های فلزی نیکل و مس از محلول‌های آبی با استفاده از هیدروکسیآپاتیت اصلاح شده به وسیله نانوذرات آهن صفر ظرفیتی. محیط زیست و مهندسی آب، 9(2)، 195-210. doi:10.22034/jewe.2022.335738.1754
پریچهره، مائده، صادق­زاده، فردین، جلیلی، بهی، بهمنیار، محمد علی، و سامسوری، عبدالوحید (1401). حذف دایرکت بلو 71 و کروم از محلول­های آبی توسط انواع جاذب­های آلی دارای پوشش فلزی، زغال زیستی دارای پوشش فلزی و کامپوزیت زغال زیستی-فلز. مدل­سازی و مدیریت آب و خاک، 3(4)، 122-132. doi:10.22098/mmws.2022.11696.1158
حمیدیان­فر، نجلا، ابوالحسنی، محمد هادی، و عطاآبادی، میترا (1398). مطالعه اثر استفاده از نانو ذره اکسید آهن در حذف فلز کادمیوم از محیط­های آبی: یک مطالعه آزمایشگاهی. مجله دانشگاه علوم پزشکی رفسنجان. 18(12)،  1252-1269. doi:20.1001.1.17353165.1398.18.12.3.1
رحمانی، علیرضا،  غفاری، حمیدرضا،  صمدی، محمدتقی، و ضرابی، منصور (1390). سنتز نانوذرات آهن و بررسی کارایی آن در حذف آرسنیک از محیط های آبی. آب و فاضلاب، 1، 35-41.
عباسی کلو، آیدا، کریمی بارزیلی، سایه، اوستان، شاهین، و شهاب آرخازلو، حسین (1402). شاخص‌های آلایندگی فلزات سنگین در خاک‌های کشاورزی آبیاری شده با فاضلاب خام (مشگین‌شهر، اردبیل). مدل‌سازی و مدیریت آب و خاک، 3(4)، 286-306. doi:10.22098/mmws.2023.13370.1332
عنایت، اکرم، عین­الهی پیر، فاطمه، پاکزاد توچایی، ساحل، و عرفانی، ملیحه (1403). سنجش و پهنه­بندی غلظت فلزات سنگین در آب چاهک­های امتداد رودخانه سیستان از نقطه صفر مرزی تا تالاب بین­المللی هامون. مدل­سازی و مدیریت آب و خاک، 4(1)، 51-69. doi:10.22067/jsw.2023.80046.1235
فروتن، عبدالرحیم، رهنمای مقدم، برهان، قدرتی کوزه کنان، سعید، و رادمهر، وحید (1390). بررسی مکانیزم حذف آلاینده های مختلف توسط نانوذرات آهن صفر ظرفیتی. پنجمین همایش و نمایشگاه تخصصی مهندسی محیط زیست. تهران، ایران.
قاضی‌زاده، نرگس، و جعفرزاده، نعمت‌اله (1387). امکان‌سنجی کاربرد نانوفناوری در کاهش آلودگی‌های محیطی با تأکید بر آلودگی خاک. دومین همایش و نمایشگاه تخصصی مهندسی محیط زیست. تهران، ایران.
ملکی، افشین (1390). بررسی توانایی زئولیت اصلاح شده با اسید برای جذب کادمیوم در محیط آبی. مجله دانشگاه علوم پزشکی مازندران، 21 (86): 75-84.
نیکو ثانی گل تپه، س.، صادقی، س.، نورآئین، م.، زواره، س.س. 1402. تأثیر نانوذرات آهن مغناطیسی در توزیع شکل­های شیمیایی کادمیوم در یک خاک آلوده. آب و خاک، 37(3)، 431-442. doi:10.22067/jsw.2023.80046.1235
 
References
Abbasi-Kalo, A., Karimi Barzili, S., Oustan, Sh., & Shahab Arkhazlo, H. (2023). Pollution indices of heavy metals in agricultural soils irrigated with raw sewage (Meshginshahr, Ardabil)Water and Soil Management and Modeling, 3(4), 286-306. [In Persian]. doi:10.22098/mmws.2023.13370.1332
Amiri. M.J. (2023). Removal of Cu(II) and Ni(II) Metal Ions from Aqueous Solutions Using Modified Hydroxyapatite by Zero-Valent Iron Nanoparticles. Environment and Water Engineering. 9(2), 195-210. [In Persian]. doi:10.22034/jewe.2022.335738.1754
Boparai, H.K., Joseph, M., & O'Carroll, D.M. (2010). Kineticss and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 1-8. doi:10.1016/j.jhazmat.2010.11.029
Cook, S.M. (2009). Assessing the Use and Application of Zero-Valent Iron Nanoparticle Technology for Remediation at Contaminated Sites. Jackson State University.
Elliott, D.W., & Zhang, W.X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology 35, 4922-4926. doi:10.1021/es0108584
Enayat, A., Einollahipeer, F., Pakzad Toochaei, S., & Erfani, M. (2024). Survey and Zoning the concentration of heavy metals in water of wells along the Sistan River from zero point border to Hamoun International wetland. Water and Soil Management and Modeling. 4(1), 51-69. [In Persian]. doi:10.22098/mmws.2023.12096.1215
Fang, Z., Chen, J.,  Qiu, X., Cheng, W., & Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268, 60-67. doi:10.1016/j.desal.2010.09.051
Foroutan, A., Rahnemay Moghaddam, B., Ghodrati Koozekanan, S., Radmehr, V., & Khodadadi Darban, A. (2012). Investigating the removal mechanism of different pollutants by zero capacity iron nanoparticles. 5th Conference and Exhibition on Environmental Engineering, Tehran. Iran. [In Persian].
Ghazizadeh, N., & Jafarzadeh, N. (2009). Feasibility of using nanotechnology in reducing environmental pollution with emphasis on soil pollution. 5th Conference and Exhibition on Environmental Engineering, Tehran. Iran. [In Persian].
Hamidianfar, N., Abolhasani, M.H., & Ataabadi, M. (2020). Investigation of the Effect of Using Iron Oxide Nanoparticles in Removing Cadmium from Aqueous Media: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences. 18(12), 1252-1269. [In Persian]. doi:20.1001.1.17353165.1398.18.12.3.1
Joo, S.H., & I.F. Cheng 2006. Nanotechnology for environmental remediation. Springer Verlag.
Li, X., & W. Zhang (2006). Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22, 4638-4642. doi:10.1021/la060057k
Li, X., & Zhang, W. (2007). Sequestration of Metal Cations with Zerovalent Iron Nanoparticles A Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS). The Journal of Physical Chemistry C. 111, 6939-6947. doi:10.1021/jp0702189
Maleki, A. (2011). Potential of acid modified zeolite for cadmium adsorption in aqueous environment. Journal of Mazandaran University of Medical Sciences, 22 (86): 75-84.
Norvell, W., Wu, J., Hopkins, D., & Welch, R. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of America Journal 64, 2162-2168. doi:10.2136/sssaj2000.6462162x
Nikkhosani Gol Tapeh, S., Sadeghi, S., Nooraien, M., & Zavareh, S. (2023). The Mutual Effect of Cadmium and Magnetic Iron Nanoparticles in the Distribution of Chemical Forms of Cadmium in a Contaminated Soil. Journal of water and Soil. 37 (3), 431-442. [In Persian]. doi:10.22067/jsw.2023.80046.1235
Parichehre, M., Sadeghzadeh, F., Jalili, B., Bahmanyar, M.A., & Samsuri, A. (2022). Removal of Direct Blue 71 and chromium from aqueous solutions by metal coating organic adsorbents, metal coating biochar and biochar-metal composite. Water and Soil Management and Modeling. 3(4), 122-132. [In Persian]. doi:10.22098/mmws.2022.11696.1158
Rahmani, A.R., Ghafari, H.R., Samadi, M.T., & Zarabi, M. (2012). Synthesis of zero valent iron nanoparticles (nZVI) and its efficiency in arsenic removal from aqueous solutions. Jurnal of Water and Wastewater, 2(1), 35-41. [In Persian].
StĘpniewska, Z., & Bucior, K. (2001). Chromium contamination of soils, waters, and plants in the vicinity of a tannery waste lagoon. Environmental Geochemistry and Health 23, 241-245. doi:10.1016/j.chemosphere.2023.137908
Sun, Y.P., Li, X., Cao, J., Zhang, W., & Wang, H.P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science 120, 47-56. doi:10.1021/acsomega.9b01898
Tarekegn, M.M., Hiruyb, A.M., & Dekebo, A.H. (2021). Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Advances, 11(30), 18539-18551. https://doi.org/10.1039/D1RA01427G
Üzüm, Ç., T. Shahwan., AE, Eroglu., I. Lieberwirth., TB, Scott., & Hallam, KR. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 144: 213-220. doi:10.1016/j.cej.2008.01.024
World Health Organization (WHO). (2008). Guidelines for drinking-water quality [electronic resource]: incorporating World Health Organization, Distribution and Sales Geneva 27 CH-1211 Switzerland.
Xu, Y., Liu, H., Wen, S., Guo, J., Shi, X., He, Q., Lin, W., Gao, Y., Wang, R., & Xue, W. (2024). High performance self-assembled sulfidized nanoscale zero-valent iron for the immobilization of cadmium in contaminated sediments: Optimization, microbial response, and mechanisms. Journal of Hazardous Materials, 134022. https://doi.org/10.1016/j.jhazmat.2024.134022
Yan, W., Herzing., A.A., Kiely, C.J., & Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology 118, 96-104. doi:10.1016/j.jconhyd.2010.09.003
Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5, 323-332. doi:10.1023/A:1025520116015