Estimating soil moisture using vegetation cover indices and soil surface temperature in agricultural and saline fields of Qazvin plain

Document Type : Research/Original/Regular Article

Authors

1 Ph.D. Student, Department of Water Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin Iran

2 Associate Professor of the Department of Irrigation and Development Engineering, Faculty of Agriculture and Natural Resources, University of Tehran & Faculty member of Imam Khomeini International University, Qazvin, Iran,

Abstract

Abstract

Introduction

Soil moisture is a key indicator for defining and identifying agricultural drought. Estimating soil moisture is useful for identifying water scarcity conditions in the early stages and evolving drought events, which have implications for crop yield uncertainty, food security, agricultural insurance, policy-making, and crop planning. Soil moisture can be estimated through various field measurement methods, which offer a wide range of techniques. Point-scale measurements are the most accurate methods for measuring Soil Moisture Content (SMC) and can also be fully automated. However, installing and maintaining these instruments can be time-consuming and costly. Soil moisture is a key indicator for defining and identifying agricultural drought. Estimating soil moisture is useful for identifying water scarcity conditions in the early stages and evolving drought events, which have implications for crop yield uncertainty, food security, agricultural insurance, policy-making, and crop planning This is particularly relevant for dry and semi-arid regions worldwide. Agricultural drought acts as a catalyst, leading to social and political conflicts in developing countries.

The advantage of using remote sensing data is the ability to create a large archive of high-resolution data.High soil salinity has negative effects on soil structure, nutrient content, and plant growth, leading to reduced crop yields and increased desertification. Various factors such as inadequate irrigation, excessive use of fertilizers, and land-use changes can contribute to increased soil salinity levels. Climate variations also play a significant role in increasing salt content in the soil, particularly in areas with low water levels and decreased groundwater quality. Therefore, monitoring soil salinity levels is crucial for sustainable soil and agricultural management.



Remote sensing has proven to be a suitable method for monitoring salinity in large-scale and heterogeneous landscapes. Through the analysis of remote sensing data, maps and spatial models of salinity and moisture distribution can be generated, aiding land management and developing risk reduction strategies. Modern remote sensing technologies include satellite imagery and aerial photographs, which provide valuable information on vegetation cover, soil composition, and moisture.



Over the past few decades, research in remote sensing has made considerable progress, and various tools for data collection and analysis have been developed. Among these tools, multispectral imaging sensors receive information across different wavelengths, providing higher accuracy and resolution in images.



Soil moisture plays a crucial role in regulating runoff, vegetation production, and evapotranspiration, making it essential for identifying agricultural drought. Estimating soil moisture can be used in the early detection of water scarcity and drought events. One common approach for estimating soil moisture is the use of remote sensing data. Satellite imagery and aerial photographs can provide useful information about soil color, texture, and vegetation cover, aiding in the estimation of soil moisture.







Materials and Methods

In this research, Landsat 8 and Sentinel-2 satellite imagery from February 2023 were used to estimate soil moisture. The Google Earth Engine platform was utilized for processing and calculations. Various vegetation indices and the Land Surface Temperature (LST) index were analyzed to assess their relationship with soil moisture. Ground data was collected using the HH2 Moisture Meter device for 23 soil moisture samples.

Results and Discussion

The results showed that there was a higher correlation between vegetation indices derived from the SENTINEL-2 sensor compared to the LANDSAT-8 sensor. Indices such as NDVI, SAVI, and NDTI had a high correlation with soil moisture content, with NDTI showing the highest correlation of 0.84. Based on the indices with the highest correlation, a regression model was developed to estimate soil moisture content. The results indicated that the regression model using the Land Surface Temperature (LST) and NDTI indices from the LANDSAT-8 sensor had the highest accuracy, with a coefficient of determination (R-squared) of 0.81 and a bias of 0.27.

Conclusion

The results of this study demonstrate that the use of remote sensing data, particularly LANDSAT-8 and SENTINEL-2 satellite imagery, can be an effective tool for estimating and monitoring soil moisture and soil salinity in agricultural and saline areas of Qazvin plain. Furthermore, continuous utilization of remote sensing data at short time intervals can serve as a useful tool for accurate and continuous soil moisture monitoring.



In this study, the correlation matrix between the calculated indices from satellite images and soil moisture was examined. The results showed that all indices, including SAVI, NDVI, NDTI, NDMI, and SMSWIR, have high correlations with soil moisture. In particular, SAVI and NDVI indices in LANDSAT-8 images had the highest correlation with negative values of 0.84 and 0.71, respectively. Moreover, the correlation analysis of land surface temperature with vegetation indices demonstrated high correlations for all indices.



In addition to correlation analysis, regression models were developed to estimate soil moisture using two indices, NDTI and LST. These models utilized influential factors on soil moisture and were capable of more accurate estimation of soil moisture using LANDSAT-8 images. Therefore, these models were introduced as regression models with high accuracy within the study area.



In general, the results of this section of the study indicate that the use of remote sensing data, particularly LANDSAT-8 and SENTINEL-2 satellite images, is beneficial for soil moisture estimation and salinity monitoring in agricultural and saline areas of Qazvin plain. Furthermore, land surface temperature serves as a useful indicator for predicting soil moisture and analyzing its temporal changes. The use of regression models based on calculated indices from LANDSAT-8 and SENTINEL-2 satellite images can lead to high accuracy in estimating soil moisture and soil salinity in the study areas.



By utilizing remote sensing data, soil moisture can be continuously monitored, and its changes over time can be observed. This information can assist farmers and water resource managers in determining the optimal timing for irrigation and efficient water resource management.



Overall, the use of remote sensing data in estimating and monitoring soil moisture and soil salinity in agricultural and saline areas of Qazvin plain can significantly improve water resource management and agriculture for this region.

Keywords

Main Subjects


منابع
ابیات، محمد، ابیات، مصطفی و ابیات، مرتضی (1401). برآورد رطوبت سطحی خاک در مناطق کشاورزی با استفاده از تصاویر ماهواره‌ای و شاخص‎‌‎‌های حسگری از دور (مطالعه موردی: شهرستان شوشتر). تحقیقات خاک و آب ایران، 53 (5)، 970-957. doi:10.22059/IJSWR.2022.341981.669251
اصغری سراسکانرود، صیاد، اسفندیاری درآباد، فریبا، ملانوری، الهام و صفری، شیوا (1401). بررسی رطوبت سطحی خاک در شهر اردبیل با استفاده از داده‌های ماهواره‌ای Landsat 8 و Sentinel 1. حفاظت منابع آب و خاک، ۱۱(۴)، ۸۹-۱۰۳. doi:10.30495/WSRCJ.2022.20006
باقری، کیوان و باقری، میلاد (1398). برآورد رطوبت خاک با استفاده از حسگری اپتیکال، ترمال و راداری (مطالعه موردی: جنوب تهران). علوم و مهندسی مدیریت حوضه آبی ایران، ۱۳(۴۷)،۶۳-۷۴. doi:20.1001.1.20089554.1398.13.47.8.6
فخار، محدثه‌السادات و کاویانی، عباس (1401). ارزیابی محصول WaPOR فائو و الگوریتم PYSEBAL در تخمین مقدار نیاز آبی دشت قزوین بر اساس هوش مصنوعی. تحقیقات آب و خاک ایران، 53(6)، 1372-1359. doi:10.22059/ijswr.2022.341474.669242
محمدی، مسعود، محمدی قلعه‌نی، مهدی و ابراهیمی، کیومرث (1380). تغییرات مکانی و زمانی کیفیت آب زیرزمینی دشت قزوین. پژوهش آب ایران، ۵(1)، ۴۱-۵۱.
هدایتی، اکرم. و کاکاوند، رضا. (1390). زون‌بندی اقلیمی استان قزوین. نیوار، ۳۶(۷۷-۷۶)، ۵۹-۶۶.
 
References
Abiyat, M., Abiyat, M., & Abiyat, M. (2022). Estimation of soil surface moisture in agricultural lands using satellite images and remote sensing indicators (Case study: Shushtar County). Iranian Journal of Soil and Water Research, 53(5), 957-970 [In Persian]. doi:10.22059/IJSWR.2022.341981.669251
Asghari S. S., Esfandayari Darabad, F., Mollanouri, E., & Safary, S. (2022). Investigation of soil surface moisture in Ardabil city using Landsat 8 and Sentile 1 satellite data. Journal of Water and Soil Resources Conservation, 11(4), 89–103 [In Persian]. doi:10.30495/WSRCJ.2022.20006
Azabdaftari, A., & Sunar, F. (2016). Soil salinity mapping using multitemporal Landsat data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 3–9. doi:10.5194/isprs-archives-XLI-B7-3-2016
Bagheri, K., & Bagheri, M., 2019. Estimation of soil moisture using optical, thermal and radar Remote Sensing) Case Study: South of Tehran. Iran. Journal of Watershed Management Science and Engineering, 13(47), 63–74. [In Persian]. doi:20.1001.1.20089554.1398.13.47.8.6
Benninga, H.-J. F., Carranza, C. D. U., Pezij, M., van Santen, P., van der Ploeg, M. J., Augustijn, D. C. M., & van der Velde, R. (2018). The Raam regional soil moisture monitoring network in the Netherlands. Earth System Science Data, 10(1), 61–79. doi:10.5194/essd-10-61-2018
Chavez Jr, P. S. (1989). Radiometric calibration of Landsat Thematic Mapper multispectral images. Photogrammetric Engineering and Remote Sensing, 55(9), 1285–1294
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. doi:10.1111/ejss.13010
Daba, A. W., & Qureshi, A. S. (2021). Review of soil salinity and sodicity challenges to crop production in the lowland irrigated areas of Ethiopia and its management strategies. Land, 10(12), 1377. doi:10.3390/land10121377
Drusch, M. (2007). Initializing numerical weather prediction models with satellite‐derived surface soil moisture: Data assimilation experiments with ECMWF¢s Integrated Forecast System and the TMI soil moisture data set. Journal of Geophysical Research: Atmospheres,112(D3). doi:10.1029/2006JD007478
Fabre, S., Briottet, X., & Lesaignoux, A. (2015). Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 μm domain. Sensors, 15(2), 3262–3281. doi:10.3390/s150203262
Fakhar, M. S., & Kaviani, A. (2022). Evaluation of FAO WaPOR product and PYSEBAL algorithm in estimating the amount of water consumed. Iranian Journal of Soil and Water Research, 53(6), 1359-1372 [In Persian]. doi:10.22059/IJSWR.2022.341474.669242
Hedayati, A., & Kakavand, R., 2012. Climatic zoning of Qazvin Province. Nivar, 36(77-76), 59–66 [In Persian].
Jagadish, S. V, Way, D. A., & Sharkey, T. D. (2021). Scaling plant responses to high temperature from cell to ecosystem. Plant, Cell and Environment, 44(BNL-221830-2021-JAAM). doi:10.1111/pce.14082
Kasim, N., Maihemuti, B., Sawut, R., Abliz, A., Dong, C., & Abdumutallip, M. (2020). Quantitative estimation of soil salinization in an arid region of the Keriya Oasis based on multidimensional modeling. Water, 12(3), 880. doi:10.3390/w12030880
Kaya, F., Schillaci, C., Keshavarzi, A., & Başayiğit, L. (2022). Predictive mapping of electrical conductivity and assessment of soil salinity in a Western Türkiye Alluvial Plain. Land, 11(12), 2148. doi:10.3390/land11122148
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J., Pachepsky, Y., & Van Der Putten, W. H. (2016). Forum paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGS). Soil Discussions, 2016, 1–28. doi:10.5194/soil-2-111-2016
Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land, 7(4), 133. doi:10.3390/land7040133
Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control (Vol. 38). US Department of Agriculture, Forest Service, Southeastern Forest Experiment
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 112(11), 3241–3246. doi:10.1073/pnas.1421533112
Kim, S., Liu, Y., Johnson, F., & Sharma, A. (2016). A temporal correlation based approach for spatial disaggregation of remotely sensed soil moisture. AGU Fall Meeting Abstracts, 2016, H51H-1606.
Li, Q., Zhong, R., Huang, J., & Gong, H. (2011). Comparison of two retrieval methods with combined passive and active microwave remote sensing observations for soil moisture. Mathematical and Computer Modelling, 54(3–4), 1181–1193. doi:10.1016/j.mcm.2010.11.052
Liu, Y., Qian, J., & Yue, H. (2021). Comprehensive evaluation of Sentinel-2 red edge and shortwave-infrared bands to estimate soil moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7448–7465. doi:10.1109/JSTARS.2021.3098513
Lobell, D. B., & Asner, G. P. (2002). Moisture effects on soil reflectance. Soil Science Society of America Journal, 66(3), 722–727. doi:10.2136/sssaj2002.7220
Marco, E. S., Herrmann, D., Schwab, K., Schweitzer, K., Almengor, R., Berndt, F., Sommer, C., & Probeck, M. (2019). Improvement of existing and development of future Copernicus land monitoring products–the ECOLASS project. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 201–208. doi:10.5194/isprs-archives-XLII-2-W16-201-2019
Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85(1), 1–20. doi:10.1016/S0034-4257(02)00188-8
Mohammadi, M., Mohammadi Ghaleney, M. , & Ebrahimi, K. (2011). Spatial and temporal variations of groundwater quality of Qazvin plain. Journal of Iranian Water Research, 5(1), 41-51 [In Persian].
Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In Climate change and soil interactions (pp. 331–350). Elsevier. doi:10.1016/B978-0-12-818032-7.00012-6
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20(9), 503–510. doi:10.1016/j.tree.2005.05.011
Rouse Jr, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Paper a 20. Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC On, 351, 309.
Ruiz-Vera, U. M., Siebers, M. H., Drag, D. W., Ort, D. R., & Bernacchi, C. J. (2015). Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Global Change Biology, 21(11), 4237–4249. doi:10.1111/gcb.13013
Sánchez, N., Alonso-Arroyo, A., Martínez-Fernández, J., Piles, M., González-Zamora, Á., Camps, A., & Vall-Llosera, M. (2015). On the synergy of airborne GNSS-R and Landsat 8 for soil moisture estimation. Remote Sensing, 7(8), 9954–9974. doi:10.3390/rs70809954
Scott, C. A., Bastiaanssen, W. G. M., & Ahmad, M.-D. (2003). Mapping root zone soil moisture using remotely sensed optical imagery. Journal of Irrigation and Drainage Engineering, 129(5), 326–335. doi:10.1061/(ASCE)0733-9437(2003)129:5(326)
Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. doi:10.1016/j.sjbs.2014.12.001
Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39–67. doi:10.1111/sum.12772
Taghadosi, M. M., Hasanlou, M., & Eftekhari, K. (2019). Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. International Journal of Remote Sensing, 40(1), 237–252. doi:10.1080/01431161.2018.1512767
Van de Griend, A. A., & Engman, E. T. (1985). Partial area hydrology and remote sensing. Journal of Hydrology, 81(3–4), 211–251.
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., Van Der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96. doi:10.1016/j.jhydrol.2013.11.061
Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3, 237–247. doi:10.1007/s11707-009-0023-7
Wang, Q., Li, J., Jin, T., Chang, X., Zhu, Y., Li, Y., Sun, J., & Li, D. (2020). Comparative analysis of Landsat-8, Sentinel-2, and GF-1 data for retrieving soil moisture over wheat farmlands. Remote Sensing, 12(17), 2708. doi:10.3390/rs12172708
Zaman, M., Shahid, S. A., & Heng, L. (2018). Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer Nature. doi:10.1007/978-3-319-96190-3
Zareie, A., Amin, M. S. R., & Amador-Jiménez, L. E. (2016). Thornthwaite moisture index modeling to estimate the implication of climate change on pavement deterioration. Journal of Transportation Engineering, 142(4), 4016007. doi: 10.5194/isprs-archives-XLI-B7-3-2016
Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., & Li, Z.-L. (2014). Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sensing, 6(4), 3170–3187. doi:10.3390/rs6043170
Zhao, W., Li, A., & Zhao, T. (2017). Potential of estimating surface soil moisture with the triangle-based empirical relationship model. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6494–6504. doi:10.1109/TGRS.2017.2728815