Direct-tangible costs in flood zones simulated using the HEC-RAS 2-D hydraulic model – the Arazkuseh River, Golestan Province

Document Type : Research/Original/Regular Article

Authors

1 PhD Student of Watershed ‎Management Science and Engineering, Department of Watershed Management, Faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran

2 Professor, Department of Watershed Management, Faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran

3 Professor, Department of Arid Zone Management, Faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran

4 Associate Professor, Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Introduction

Flood events are the most complex natural hazards that endanger human and animal lives, social and economic settings, and environmental resources more than any other natural disaster. This phenomenon is caused by the water flow exceeding the river's channel capacity. The expansion of flood zone along river banks in recent years due to climate change and inappropriate use of natural resources is associated with irreparable socio-economic and environmental damages. Simulation of potential flood zones is crucial for management purposes of flood prone areas. Hydraulic models are proved to be useful in simulating flood zones, identifying hotspot areas, and thus, estimating potential damages. The Arazkuseh River is situated downstream of three watersheds, namely Minodasht, Narmab and Nodeh Khandooz. It is prone to flooding during periods of heavy rainfall in the watersheds. The aims of this research are to assess the performance of the HEC-RAS 2-D hydraulic model in simulating the flood zone for the event of March 17, 2019, and to estimate the direct-tangible damages incurred in a 9-km river reach from the Arazkuseh River due to floods in different return periods.

Materials and Methods

The HEC-RAS software has the ability to calculate water level in rivers while considering hydraulic structures. To estimate the velocity vectors, the two-dimensional diffusion wave was used, which takes into account more stable numerical solutions and reduces the calculation time. A Digital Elevation Model (DEM) map with a resolution of one-meter was used to create input terrain data for this model. The flood event hydrograph on March 17, 2019 with a peak discharge of 355 cubic meters was recorded at the Arazkuseh hydrometric station located at the joint outlet of the upstream watersheds. Manning's roughness coefficient values estimated based on field observations in the channel and flood plain were also calibrated with the index F during the evaluation of the model's performance. In order to evaluate the performance of the HEC-RAS 2-D model, the outputs of the model for the flood event on March 17, 2019 were compared with the flood zones identified by the Sentinel-2 satellite images at two different days (23 March and 2 April, 2019). The Pilgrim's computational method was used to identify temporal distribution model of the design rainfalls for the Arazkuseh watershed in different return periods. Additionally, the CoKriging geostatistical method was used to estimate the spatial pattern of the design rainfalls. Thus, the hydrographs simulated by the HEC-HMS hydrological model for the design rainfalls were considered as inputs to the HEC-RAS software. Following identifying the elements exposed to flooding, direct and tangible damages caused by the simulated floods to different land uses were estimated through collecting information from different sources accompanied by field observations.

Results and Discussion

The F index values (79% and 71% for 23 March, 2019, and 2 April, 2019, respectively) indicate that the HEC-RAS 2-D model has an acceptable performance in simulating the flood zone areas in the Arazkuseh River. However, the area of the simulated flood zone shows an overestimation compared to the flood zone observed by the Sentinel-2 images. The overestimation of the flood zone areas by the HEC-RAS 2-D model can be related to the accuracy of the DEM map and the Manning's roughness coefficient estimation. Analysis of the flood zone for the 100-year return period, as a base flood, reveals that crops, trees, dirt roads, residential areas, and asphalt roads are most likely to experience inundation, respectively. Even in 10-year return period, crop lands are likely to place in the flood zone due to gentle slope and the proximity to the river bank. The highest amount of direct-tangible costs for the 100-year flood, is associated to crop lands, residential areas, trees, dirt road, and asphalt road with values of 20889, 8650, 7503, 2250, and 1750 million Iranian Rial, respectively.

Conclusion

The use of DEM data with appropriate spatial resolution is very important in creating terrain data and simulating flood zones in two-dimensional models. Damages to agricultural products and costs attributed to the removal of sediments and cleaning up in crop lands will be significant due to the spreading out of the flood water in this land use. The high damage incurred to the residential areas is because of costly repairs required after flooding and also the price of houses' contents. The total area of land uses which are exposed to 100-year flooding is about 23 hectares and the total damage imposed is approximately, 41042 million Iranian Rial. Therefore, due to the expansion of the residential areas along the river, it is necessary to reduce the hazard of flooding, to enhance adaptive capacity and coping capacity, and to decrease the level of exposure. In crop lands, managers and practitioners should reduce the amount of damages to this land-use by appropriate actions such as flood insurance promotion and introducing resistant varieties to inundation in the study area.

Keywords

Main Subjects


بهره‌مند، عبدالرضا، جمالی، فاطمه، و کمکی، چوقی‌بایرام (1399). شبیه‌سازی دوبعدی سیل با استفاده از مدل Nays 2D Flood و مقایسه آن با تصویر ماهوارة سنتینل-2 (مطالعه موردی: سیل اسفند 1397 در بازه انتهایی رودخانة ارازکوسه، استان گلستان). پژوهش‌های حفاظت آب و خاک، 27(2)، 236-223. doi:10.22069/jwsc.2020.17618.3325
پاریزی، اسماعیل، و حسینی، سید موسی (1402). برآورد میزان دقت مدل رقومی ارتفاعی TanDEM-X در شبیه‌سازی مشخصات هیدرولیکی سیلاب (مطالعه موردی: حوضه رودخانه اترک). جغرافیا و برنامه‌ریزی محیطی، 34(2)، 134-113. doi:10.22108/GEP.2022.134293.1533
تمسکنی زاهدی، علی، بارانی، حسین، مختاری، شهرو، و بهره‌مند، عبدالرضا (1400). تهیه نقشه خطر و خسارت سیل با استفاده از مدل هیدرولیکی دوبعدی LISFLOOD-FP (مطالعه موردی: حوزه ارازکوسه). پژوهش‌های حفاظت آب و خاک، 28(4)، 25-1. doi:10.22069/jwsc.2022.19717.3516
ثقفیان، بهرام، رزمخواه، هما، و قرمزچشمه، باقر (1390). بررسی تغییرات منطقه‌ای بارش سالانه با کاربرد روش‌های زمین‌آمار (مطالعه موردی: استان فارس). مهندسی منابع آب، 4، 38-29. dor:20.1001.1.20086377.1390.4.9.3.1
حجام، سهراب، و مالکی‌فرد، فاطمه (1381). تعیین الگوی توزیع زمانی بارندگی در ایستگاه‌های منتخب استان خراسان. فیزیک زمین و فضا، 28(2)، 44-35. dor:20.1001.1.2538371.1381.28.2.5.5
دنیاری، محمدصادق، وحیدنیا، محمدحسن، و بیک‌پور، شهرام (1400). بررسی سیلاب شهری اهواز با استفاده از تلفیق تحلیل‌های مکانی و هیدرولوژیک در GIS و افزونه HEC-RAS. اکوهیدرولوژی، 8(4)، 1006-989. doi:10.22059/IJE.2022.328320.1532
سعیدی فرزاد، بهرام، کاردان، نازیلا، و سلمانی، مصطفی (1402). ارزیابی کارایی دو نرم‌افزار HEC-RAS 2D و CCHE 2D در پهنه‌بندی سیلاب ناشی از شکست سد و مدیریت ریسک سیلاب در پایین‌دست (مطالعه موردی: سد بارون). دریا فنون، 10(1)، 63-47. doi:10.22034/ijmt.2022.543650.1744
شیخ بیکلو اسلام، بابک (1400). شواهد و پیامدهای رویداد سیل در ایران از پیش از تاریخ تا کنون. مدل‌سازی و مدیریت آب و خاک، 1(1)، 40-24. doi:10.22098/MMWS.2021.1173
صمدی، امیر، و عزیزیان، اصغر (1399). تاثیر مفهوم تغییرات درون سلولی، ابعاد شبکه محاسباتی و مقیاس نقشه توپوگرافی برعملکرد مدل دوبعدی HEC-RAS در شبیه‌سازی پهنه‌های سیلگیر رودخانه‌ها (مطالعه موردی: رودخانه سرباز). حفاظت منابع آب و خاک، 9(3)، 11-2. dor:20.1001.1.22517480.1399.9.3.1.3
صیاد، دانیال، قضاوی، رضا، و امیدوار، ابراهیم (1400). تهیه و تحلیل نقشه خطر سیلاب با استفاده از مدل هیدرولیکی HEC-RAS و RAS MAPPER (مطالعه موردی: رودخانه سوک چم کاشان). جغرافیا و مخاطرات محیطی، 10(3)، 37-19. doi:10.22067/geoeh.2021.69554.1038
علیزاده، امین (1390). اصول هیدرولوژی کاربردی. انتشارات بنیاد فرهنگی رضوی. 800 صفحه.
محمدی، میرعلی، ابراهیم نژادیان، حمزه، عسگرخان مسکن، محسن، و وزیری، ونوس (1401). ارزیابی عملکرد مدل‌های یک‌بعدی و دوبعدی HEC-RAS در تعیین پهنه سیلابی رودخانه‌ها. علوم آب و خاک، 26(2)، 201-187. doi:10.47176/jwss.26.2.43941
مشعشعی، سید میثم، پناهی، رویا، و مشعشعی، میترا (1401). تحلیل دینامیکی مخاطره سیلاب با استفاده از مدل هیدرولیکی HEC-RAS (مطالعه موردی: رودخانه شاهین‌شهر، استان اصفهان). جغرافیا و مخاطرات محیطی، 11(1)، 97-77. doi:10.22067/geoeh.2021.71679.1093
ملائی، علی، و تلوری، عبدالرسول (1388). بررسی و تعیین الگوی توزیع زمانی بارش در استان کهگیلویه و بویراحمد با استفاده از روش محاسباتی پیل‌گریم. مهندسی و مدیریت آبخیز، 1(2)، 77-70. dor:20.1001.1.22519300.1388.1.2.1.3
میرزایی، شهناز، سعدالدین، امیر، بهره‌مند، عبدالرضا، اونق، مجید، و مصطفی‌زاده، رئوف (1402). کارایی مدل هیدرولوژیکی HEC-HMS در شبیه‌سازی فرآیند بارش-رواناب در آبخیزهای بالادست شهر گنبد. اکوهیدرولوژی، 10(3)، 377-355. doi:10.22059/IJE.2023.359860.1734
میرزایی، شهناز، و سعدالدین، امیر (1398). چارچوب ارزیابی جامع خسارت‌های اقتصادی سیل (مستقیم، غیرمستقیم، ملموس و ناملموس): رخداد سیل 29 فروردین 1395 نوده‌خاندوز، حوضه رودخانه گرگان‌‌رود. دانش پیشگیری و مدیریت بحران، 9(4)، 392-383. dor:20.1001.1.23225955.1398.9.4.5.0
وزیری، فریبرز 1371. تعیین روابط منطقه‌ای بارندگی‌های کوتاه‌ مدت در ایران. طرح پژوهشی دانشگاه خواجه نصیرالدین طوسی. 28 صفحه.
وفایی، مسعود، دستورانی، محمدتقی، و رستمی خلج، محمد (1402). ارزیابی خطر سیلاب در پردیس دانشگاه فردوسی مشهد و ارائه سناریوهای مدیریتی با استفاده از مدل HEC-RAS. مدل‌سازی و مدیریت آب و خاک، 3(3)، 239-225. doi:10.22098/mmws.2022.11815.1173
 
 
References
Abdessamed, D., & Abderrazak, B. (2019). Coupling HEC‑RAS and HEC‑HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environmental Earth Sciences, 78(586), 1-17. doi:10.1007/s12665-019-8604-6
Ahmad, I., Wang, X., Waseem, M., Zaman, M., Aziz, F., Nabi Khan, R.Z., & Ashraf, M. (2022). Flood management, characterization and vulnerability analysis using an integrated RS-GIS and 2D hydrodynamic modelling approach: The Case of Deg Nullah, Pakistan. Remote Sensing, 14(2138), 1-19. doi:10.3390/rs14092138
Akiyanova, F., Ongdas, N., Zinabdin, N., Karakulov, Y., Nazhbiyev, A., Mussagaliyeva, Z., & Atalikhova, A. (2023). Operation of gate-controlled irrigation system using HEC-RAS 2D for spring flood hazard reduction. Computation, 11(27), 1-23. doi:10.3390/computation11020027
Alizadeh, A. (2012). Principles of applied Hydrology. Razavi Cultural Bonyad Publications, 800 pages. [In Persian].
Ansori, M.B., Lasminto, U., & Kartika, A.A.G. (2023). Flood hydrograph analysis using Synthetic Unit Hydrograph, HEC-HMS, and HEC-RAS 2d unsteady flow precipitation on-grid model for disaster risk mitigation. International Journal of GEOMATE, 25(107), 50-58. doi:10.21660/2023.107.3719
Aqnouy, M., Ahmed, M., Ayele, G.T., Bouizrou, I., Bouadila, A., & El Messari, J.E.S. (2023). Comparison of hydrological platforms in assessing rainfall-runoff behavior in a Mediterranean watershed of Northern Morocco. Water, 15(447), 1-18. doi:10.3390/w15030447
Arash, A.M., & Yasi, M. (2022). The assessment for selection and correction of RS-based DEMs and 1D and 2D HEC-RAS models for flood mapping in different river types. Flood Risk Management, 16(1), 1-15. doi:10.1111/jfr3.12871
Arcement, G.J., & Schneider, V.R. (1989). Guide for selecting Manning's roughness coefficients for natural channels and flood plains. United States Geological Survey, Water Supply, 2339, 38p. doi:10.3133/wsp2339
Bahremand, A., Jamali, F., & Komaki, Ch.B. (2020). 2D flood simulation using the Nays 2D flood model and comparison with the Sentinel 2 Satellite Image (Case study: flood of March 2019 at the end of Arazkuse River, Golestan Province). Water and Soil Conservation, 27(2), 223-236. doi:10.22069/jwsc.2020.17618.3325 [In Persian].
Bezak, N., Šraj, M., & Mikoš, M. (2017). Design rainfall in engineering applications with focus on the design discharge. Engineering and mathematical topics in rainfall, Chapter 1, 1-15. doi:10.5772/intechopen.70319
Bhusal, A., Parajuli, U., Regmi, S., & Kalra, A. (2022). Application of machine learning and process-based models for Rainfall-Runoff simulation in DuPage River Basin, Illinois. Hydrology, 9(7), 1-20. doi:10.3390/hydrology9070117
Bomers, A., van der Meulen, B., Schielen, R.M.J., & Hulscher, S.J.M.H. (2019). Historic flood reconstruction with the use of an Artificial Neural Network. Water Resources Research, 55, 9673-9688. doi:10.1029/2019WR025656
Chiang, S., Chang, C.H., & Chen, B. (2022). Comparison of rainfall-runoff simulation between support vector regression and HEC-HMS for a rural watershed in Taiwan. Water, 14(2), 1-18. doi:10.3390/w14020191
Donyari, S., Vahidnia, M. H., & Baikpour, S. (2022). Investigation of urban flooding in Ahvaz using the combination of spatial and hydrological analysis in GIS and HEC-RAS plugin. Ecohydrology, 8(4), 989-1006. doi:10.22059/ije.2022.328320.1532 [In Persian].
FAO. (2001). Small dams and weirs in earth and gabion materials. Food and Agriculture Organization of the United Nations. Land and Water Development Division, 171 pages.
Fassoni-Andrade, A.C., Paiva, R., Wongchuig, S., Barbosa, C., & Durand, F. (2023). Expressive fluxes over Amazon floodplain units revealed by high resolution 2D modelling. EGU General Assembly, 23(439). doi:10.5194/egusphere-egu23-439
Ghaderi, A., Daneshfaraz, R., & Dasineh, M. (2019). Evaluation and prediction of the scour depth of bridge foundations with HEC-RAS numerical model and empirical equations (Case study: Bridge of Simineh Rood Miandoab, Iran). Engineering Journal, 23(6), 279-295. doi:10.4186/ej.2019.23.6.279
Giupponi, C., Mojtahed, V., Gain, Z.K., Biscaro, C., & Balbi, S. (2015). Integrated risk assessment of water-related disasters. Pp. 163-200, In: Shroder, J.F., Paron, P & Di Baldassarre, G (eds), Hazards and disasters series: Hydro-meteorological hazards, risks, and disasters, Elsevier.
Hejam, S., & Malekifard, F. (2002). Determining the time distribution pattern of rainfall in selected stations of Khorasan province. Earth and Space Physics, 28(2), 35-44. dor:20.1001.1.2538371.1381.28.2.5.5 [In Persian].
Hirt, C. 2014. Digital terrain models. Encyclopedia of Geodesy, 1-6. doi:10.1007/978-3-319-02370-0_31-1
Horritt, M.S., & Bates, P.D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Hydrology, 268, 87-99. doi:10.1016/S0022-1694(02)00121-X
Kumar, N., Kumar, M., Sherring, A., Suryavanshi, S., Ahmad, A., & Lal, D. (2019). Applicability of HEC‑RAS 2D and GFMS for flood extent mapping: a case study of Sangam area, Prayagraj, India. Modeling Earth Systems and Environment, 6, 397-405. doi:10.1007/s40808-019-00687-8
Liao, D., Zhang, Q., Wang, Y., Zhu, H., & Sun, J. (2021). Study of four rainstorm design methods in Chongqing. Frontiers in Environmental Science, 9, 1-9. doi:10.3389/fenvs.2021.639931
Mirzaei, S., & Sadoddin, A. (2020). Comprehensive flood financial losses assessment framework (direct, indirect, tangible and intangible): Flood incident on 17 April 2016, Nodeh Khandooz, the Gorganrood River Basin, Iran. Disaster Prevention and Managemaent Knowledge, 9(4), 383-392. dor:20.1001.1.23225955.1398.9.4.5.0 [In Persian].
Mirzaei, S., Sadoddin, A., Bahremand, A., Ownegh, M., & Mostafazadeh, R. (2023). The HEC-HMS hydrological model performance in the rainfall-runoff process simulation for the upstream watersheds of Gonbad, Iran. Ecohydrology, 10(3), 355-377. doi:10.22059/ije.2023.359860.1734 [In Persian].
Mohammadi, M., Ebrahimnezhadian, H., Asgarkhan maskan, M., Vaziri, V. (2022). Evaluation of the one and two-dimensional HEC-RAS models' performance in determining flood zone of rivers. Water and Soil Science, 26(2), 187-201. doi:10.47176/jwss.26.2.43941 [In Persian].
Mollaie, A., & Telvari, A.R. (2009). Determination of rainfall temporal pattern in Kohkiloyeh and ‎Boyerahmad province by Pilgrim method. Watershed Engineering and Management, 1(2), 70-77. dor:20.1001.1.22519300.1388.1.2.1.3 [In Persian].
Morsy, M.M., Goodall, J.L., O'Neil, G.L., Sadler, J.M., Voce, D., Hassan, G., & Huxley, C. (2018). A cloud-based flood warning system for forecasting impacts to transportation infrastructure systems. Environmental Modelling & Software, 107, 231–244. doi:10.1016/j.envsoft.2018.05.007
Moshashaie, S.M., Panahi, R., & Moshashaie, M. (2022). Dynamic analysis of flood risk using HEC-RAS hydraulic model (Case study: Shahinshahr River, Isfahan Province). Geography and Environmental Hazards, 11(1), 77-97. doi:10.22067/geoeh.2021.71679.1093 [In Persian].
Ongdas, A., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) River in Kazakhstan. Water, 12(2672), 1-20. doi:10.3390/w12102672
Parizi, E., & Hosseini, S.M. (2023). Estimation of Tandem-X Digital Elevation Model precision in Simulation of Flood Hydraulic Characteristics (Case Study: Atrak River Basin). Geography and Environmental Planning, 34 (2), 113-134. doi:10.22108/GEP.2022.134293.1533 [In Persian].
Pilgrim, D.H., & Cordery, I. (1975). Rainfall temporal patterns for design floods. Hydraulics Division. 101(1), 81-95. doi:10.1061/JYCEAJ.0004197
Raghunath, H.M. (2006). Hydrology, Principles Analysis Design. New Age International (P) Limited, Publishers. 463 pages.
Rahimzadeh, O., Bahremand, A., Noura, N., & Mukolwe, M. (2019). Evaluating flood extent mapping of two hydraulic models, 1D HEC-RAS and 2D LISFLOOD-FP in comparison with aerial imagery observation in Gorgan flood plain, Iran. Natural Resource Modeling, 32(40), 1-12. doi:10.1111/nrm.12214
Rangari, V.A., Umamahesh, N.V., & Bhatt, C.M. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5, 1839-1851. doi:10.1007/s40808-019-00641-8
Saber, M., Boulmaiz, T., Guermoui, M., Abdrabo, I.E, Kantoush, S.A., Sumi, T., Boutaghane, H., Hori, T., Binh, D.V., Nguyen, B.Q., Bui, T.T.P., Vo, N.D., Habib, E., & Mabrouk, E. (2023). Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling. Geomatics, Natural Hazards and Risk, 14(1), 38p. doi:10.1080/19475705.2023.2203798
Saeidifarzad, B., Kardan, N., & Salmani, M. (2023). Evaluation of performance of HEC-RAS 2D and CCHE2D softwares in flood zoning due to dam break and risk management of its flood (Case study: Baron dam). Marine Technology Journal, 10(1), 47-63. doi:10.22034/ijmt.2022.543650.1744 [In Persian].
Saghafian, B., Razmkhah, H., & Ghermez Cheshmeh, B. (2011). Investigating regional changes in annual rainfall using geostatistical methods (Case study: Fars province). Water Resources Engineering, 4(9), 29-38. dor:20.1001.1.20086377.1390.4.9.3.1 [In Persian].
Salami, A.W., Bilewu, S.O., Ibitoye, A.B., & Ayanshola, A.M. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of selected rivers in South West Nigeria. Ecological Engineering, 18(1), 25-34. doi:10.12911/22998993/66258
Samadi, A., & Azizian, A. (2020). Influence of the concept of subgrid variability and computational mesh dimensions on the performance of HEC-RAS 2D model in simulating river floodplains (Case study: Sarbaz River). Water and Soil Resources Conservation, 9(3), 1-12. dor:20.1001.1.22517480.1399.9.3.1.3 [In Persian].
Satriagasa, M.C., Tongdeenok, P., & Kaewjampa, N. (2023). Assessing the implication of climate change to forecast future flood using SWAT and HEC-RAS model under CMIP5 climate projection in upper Nan Watershed, Thailand. Sustainability, 15(5276), doi:10.3390/su15065276
Sayyad, D., Ghazavi, R., & Omidvar, E. (2021). Preparation and analysis of flood risk map using HEC RAS and RAS MAPPER hydraulic model (Case study: Sok Cham river of Kashan). Geography and Environmental Hazards, 10(3), 19-37. doi:10.22067/geoeh.2021.69554.1038 [In Persian].
Shaikh Baikloo Islam, B. (2021). Evidence and consequences of the flood in Iran from prehistory to the present. Water and Soil Management and Modeling, 1(1), 24-40. doi:10.22098/MMWS.2021.1173 [In Persian].
Shustikova, I., Domeneghetti, A., Neal, J.C., Bates, P., & Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences, 64(14), 1769-1782. doi:10.1080/02626667.2019.1671982
Sideng, U., Upu, H., Haris, N.A., & Rahmayana, D. (2023). 2D simulation of design discharge in flood hazard spatial analysis using HEC-RAS, (Case study: Mata Allo Sub-Watershed, Enrekang, Indonesia). Geographia Technica, 18(2), 1-13. doi: 10.21163/GT_2023.182.01
Tamaskani Zahedi, A., Barani, H., Mokhtari, Sh., Bahremand, A. (2022). Flood hazard and Risk maps using two-dimensional hydraulic model LISFLOOD-FP (Case study: Araz Kooseh region). Water and Soil Conservation, 28(4), 1-25. doi:10.22069/jwsc.2022.19717.3516 [In Persian].
Tufano, R., Guerriero, L., Corona, M.A., Cianflone, G., Martire, D.D., Ietto, F., Novellino, A., Rispoli, C., Zito, C., & Calcaterra, D. (2023). Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling. Natural Hazards, 116, 1029-1051. doi:10.1007/s11069-022-05710-3
USDA, (2023). HEC-RAS, River Analysis System, User's Manual. US Army Corps of Engineers, 732 pages.
USDA, Natural Resources Conservation Service. (2007). Hydrographs. Chapter 16. Part 630 Hydrology. National Engineering Handbook. 50p.
Vafaei, M., Dastorani, M.T., & Rostami Khalaj, M. (2023). Flood risk assessment on the campus of Ferdowsi University of Mashhad and presentation management scenarios using the HEC-RAS model. Water and Soil Management and Modeling, 3(3), 225-239. doi:10.22098/mmws.2022.11815.1173 [In Persian].
Vaziri, F. (1993). Determining regional relationships of short-term rainfall in Iran. Research project of Khajeh Nasir al-Din Toosi University of Technology, 28 pages. [In Persian].
Vicente-Serrano, S.M., Saz-Sánchez, M.A., & Cuadrat, J.M. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Research, 24, 161-180. doi:10.3354/cr024161
Zia, S.B., Al Womera, S., & Rahman, MD.A. (2022). Hydrological assessment and flood inundation mapping for flood plain of Padma river using HEC-RAS 2D. 6th International Conference on Civil Engineering for Sustainable Development (ICCESD), 1-10. doi:10.1063/5.0129938