Investigating the effect of cropping pattern on changes in underground water level in a part of Mashhad-Chenaran plain aquifer

Document Type : Research/Original/Regular Article

Authors

1 Soil Conservation and Watershed Management Research Department, Khorasan Razavi Agricultural and Natural ResourcesResearch and Education Center, AREEO, Mashhad, Iran

2 Soil Conservation and Watershed Management Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Mashhad, Iran

Abstract

Introduction

Management of underground water resources in arid and semi-arid regions is of particular importance. Because the drinking water of a huge part of the countries that live in arid and semi-arid regions relies on underground water sources. The ever-increasing need for water following severe socio-economic changes in the country along with successive droughts in recent years has led to the expansion of the use of deep, semi-deep wells and dams. More extraction of underground water by digging deep wells has caused a drop in the underground water level.The underground water level is one of the most important parameters affecting the qanat discharge, preventing land subsidence and permanent rivers recharge. Using new methods to know the changes in the underground water level and simulating the effects of different management methods can be of great help in managing the water resources of an aquifer. Recently, the use of different models and simulation of aquifers has been able to help mankind to achieve its management goals, and groundwater modeling has become an important tool for managing water resources in aquifers. Since Khorasan Razavi province is located in the arid and semi-arid climate zone and exploitation of underground water has a great effect in providing part of the water needed for agriculture, drinking and livestock drinking Management of this valuable resource is essential. But for management, a series of tools are needed to predict and simulate the effects of various factors. One of these tools is model and modeling, which can achieve acceptable results by using some measurable parameters.

Materials and Methods

Mashhad-Chenaran plain is under the main basin of Kashfroud River, which has an area of 990,914 hectares, is located in the north of Razavi Khorasan province, and is under the basin of Qaraqom watershed. Mashhad-Chenaran plain includes a part of Mashhad city, Targaba-Shandiz, Chenaran and a part of south Qochan. The GMS model was used to investigate the effect of implementing the cultivation pattern and its effect on the changes in the underground water level in the northern part of the Mashhad-Chennaran aquifer. The required layers of GMS model are: a: layer of observation wells b: layer of harvesting values, c: layer of feeding aquifer d: layer of boundary of aquifer and e: layer of bottom rock of aquifer. In the simulation of the studied area, the size of the cells in the entire studied area was considered to be 300 x 300 meters. According to the available data and information for running the model in steady state, September 2006 was entered as the initial hydraulic load. Then, the LPF package was used in MODFLOW model to solve the groundwater flow and level, and the groundwater flow of the studied area was simulated in two stable and unstable states.

Results and Discussion

After preparing the coverage needed for the model, the model was calibrated in steady state. After calibrating the model in the steady state by introducing stress periods, the GMS model was calibrated in the unsteady state. The results showed that the GMS model has simulated the water level with proper accuracy after calibration. Examining the chart of observed and simulated values shows that in some of the investigated piezometers, the simulated groundwater level is higher than the observed ones, and the model tends to overestimate.To implement the management scenario, six percent of the water used in all the wells used in the agricultural sector was reduced and the model was re-implemented. The results showed that the six percent reduction of water consumption in the agricultural sector on the level of piezometers was about 5 to 15 cm on average and caused the rise of the underground water level in the studied areas.

Conclusion

One of the main sources of water supply for agriculture, animal husbandry and drinking in Mashhad-Chenaran Plain region is underground water sources. But in recent years, due to excessive exploitation of underground water resources and climate changes, the level of underground water has decreased and has had many economic-social consequences. Therefore, for the optimal management and exploitation of this underground water source, it is necessary to know the changes in the underground water level and predict the effects of various factors on it. One of the tools that can be used to determine the changes in the underground water level and the effect of various factors on it are computer models. One of the important tools for managing underground water resources are the models designed for this issue, therefore the MOFLOW model used in this research has a good ability to simulate the level of underground water in the studied areas in permanent and non-permanent conditions. Examining the chert of the observed and simulated balance by the GMS model showed that a six percent reduction in water withdrawal in the agricultural sector increases the level of underground water, but it does not compensate for the amount of damage caused to the aquifer due to excessive withdrawal and only reduces its effect.

Keywords

Main Subjects


بانژاد، حسین، محب‌زاده، حمید، قبادی، محمدحسین، و حیدری، مجید (1392). شبیه‌سازی عددی جریان و انتقال آلودگی در آب‌های زیرزمینی مطالعه موردی: آبخوان دشت نهاوند. دانش آب و خاک، 23(2)، 43-57.
بیات ورکشی، مریم، و فصیحی، روژین (1397). مقایسه مدل‌ عددی، روش‌های هوشمند عصبی و زمین آمار در تخمین سطح آب زیرزمینی. تحقیقات کاربردی علوم جغرافیایی. ۱۸ (۴۸)، ۱۶۵-۱۸۲. doi:10.29252/jgs.18.48.165
خزایی، مجید، صالح، ایمان، چاکرالحسینی، محمدرضا، فرزین، محسن (1402). تأثیر قیمت آب تحت سناریوهای مختلف تخصیص بر بهره‌وری اقتصادی الگوی کشت. مدل‌سازی و مدیریت آب و خاک، 3(3)، 196-211.                                       doi:10.22098/mmws.2022.11764.1166
دستواره، جلیل، ناصریان اصل، زهرا، حسنوند، هانیه، و امیری دوماری، سحر (1399). مدل‌سازی تراز آب زیرزمینی و بررسی وضعیت آبخوان دشت میناب. جغرافیا و روابط انسانی، 3(2)، 50-59. doi:10.22034/gahr.2020.247817.1442
دوستی رضایی، مهرنگ، زینال‌زاده، کامران، بشارت، سینا، و امیرعطایی، بابک (1401). تأثیر سناریوهای مدیریتی و اقلیمی در تغییرات سطح آب زیرزمینی (مطالعه موردی مدل‏سازی عددی در آبخوان دشت سلماس). آبیاری و زهکشی ایران، 16(2)، 280-293.dor: 20.1001.1.20087942.1401.16.2.2.1
سعیدپناه، ایرج، و محمدزاده روفچایی، سمیه (1398). حل دقیق پاسخ جریان آب زیرزمینی در آبخوان بسته به تغییرات سطح آب رودخانه. اکوهیدرولوژی، 6(4)، 957-968. doi: 10.22059/ije.2019.282765.1132
شیخابگم قلعه، سیمین، بابازاده، حسین، رضایی، حسین، سرایی تبریزی، مهدی (1402). مدل‌سازی عددی و تحلیل روند وضعیت کمی آبخوان مهاباد. مدل‌سازی و مدیریت آب و خاک، 3(2)، 1-17.doi:10.22098/mmws.2022.11275.1113
صالحی شفا، نیما، بابازاده، حسین، آقایاری، فیاض، صارمی، علی، غفوری، محمد‌رضا، صفوی، مسعود و پناهدار، علی (1401). تدوین الگوی کشت بهینه به‌منظور مدیریت تغییرات سطح آب زیرزمینی دشت شهریار. مدل‌سازی و مدیریت آب و خاک، 3(2)، 235-217، doi:10.22098/mmws.2022.11792.1169
عدالت، علی، خداپرست، مهدی، و رجبی، علی محمد (1400). بررسی اثرات تغییر تراز آب زیرزمینی آبخوان بر پدیده فرونشست و راهکارهای تعادل بخشی آبخوان (مطالعه موردی؛ دشت علی‌آباد قم). مهندسی عمران امیرکبیر، 53(5)، 2023- 2042. . doi: 10.22060/ceej.2020.17275.6511
فلاحی، محمد معین، شعبانلو، سعید، رجبی، احمد، یوسفوند، فریبرز، و ایزدبخش، محمد علی (1401). اثر تغییر اقلیم بر تغییرات تراز آب زیرزمینی براساس گزارش پنجم کمیته بین‌الدول تغییر اقلیم در آبخوان رزن. تحقیقات آب و خاک ایران، 53(5)، 993-1008. doi:10.22059/ijswr.2022.337121.669179
قبادیان، رسول، فتاحی چقابگی، علی، و زارع، محمد (1393). تأثیر احداث شبکه آبیاری و زهکشی سد گاوشان بر منابع آب زیرزمینی دشت میان دربند با استفاده از مدل GMS 6.5. پژوهش آب در کشاورزی، 28(4)، 759-772. doi: 10.22092/jwra.2015.100830
مسلمی، حمید (1398). ارزیابی بحران آب زیرزمینی در مناطق خشک و نیمه خشک (مطالعه موردی: دشت جغین و توکهور). علوم مهندسی و آبیاری، 42(3)، 31-46. doi: 10.22055/jise.2017.19218.1384
مهدوی، تقی، و حسینی، سید عباس (1397). سیاست‌ها و حکمرانی آب زیرزمینی در مناطق خشک و نیمه‌خشک، (با مرور بر سیاست‌های رایج در کشورهای توسعه یافته). آب و توسعة پایدار، 5(2)، 129-140. doi:10.22067/jwsd.v5i2.67197
ولایتی، سعداله، طالشی، مصطفی، و شریفی‌مقدم ریابی، مرضیه (1388). علل کاهش آبدهی قنوات دشت گناباد و پیامدهای اجتماعی اقتصادی آن. جغرافیا، (20-21)، 47-66.
 
 
References
Banejad, H., Mohebzadeh, H., Ghobadi, A.G., & Heydari, M. (2013). Numerical simulation of the flow and contaminant transport in groundwater, Case study: Nahavand Plain Aquifer. Water and Soil, 23(2), 43-57. [In Persian]
Bayat, M., Eslamian, S., Shams, G., & Hajiannia, A. (2020). Groundwater level prediction through GMS Software–Case study of Karvan area, Iran. Quaestiones Geographicae, 39(3), 139-145. doi: https://doi.org/10.2478/quageo-2020-0028
Bayatvarkeshi M., & Fasihi R. (2018). Comparison of numerical model, neural intelligent and GeoStatistical in estimating groundwater table. Journal of Applied Researches in Geographical Sciences, 18(48), 165-182. doi:10.29252/jgs.18.48.165 [In Persian]
Bohidar, A.K., & Ahmad, I. (2021). Development of conceptual model and groundwater flow modeling using GMS software: A case study for Dharsiwa Block, Chhattisgarh, India. In Groundwater Resources Development and Planning in the Semi-Arid Region, 151-164. Springer, Cham. doi: https://doi.org/10.1007/978-3-030-68124-1_8
Condon, L. E., Kollet, S., Bierkens, M. F., Fogg, G. E., Maxwell, R. M., Hill, M. C., Fransen, H. H., Verhoef, A., Loon, A. V., Sulis, M., & Abesser, C. (2021). Global groundwater modeling and monitoring: Opportunities and challenges. Water Resources Research57(12), e2020WR029500.‏ doi:  https://doi.org/10.1029/2020WR029500
Dastvareh, J., Naserianasl, Z., hasanvand, H., & Amiri Domari, S. (2020). Modeling groundwater level and investigating the aquifer status of Minab plain. Geography and Human Relationships, 3(2), 50-59. doi:10.22034/gahr.2020.247817.1442.[In Persian]
Dousti Rezaie, M., Zeinalzadeh, K., Besharat, S., & Amirataee, B. (2022). Effects of management and climate scenarios on groundwater level changes: Case numerical modeling study in Salmas Plain Aquifer. Iranian Journal of Irrigation and Drainage, 16(2), 280-293. dor: 20.1001.1.20087942.1401.16.2.2.1 [In Persian]
Edalat, A., khodaparast, M., & Rajabi, A.M. (2021). Investigating the effect of aquifer water table variation on the subsidence phenomenon and balancing strategies of the aquifer (Case study: Ali-Abad Plain, Qom). Amirkabir Journal of Civil Engineering53(5), 2023-2042. doi:10.22060/ceej.2020.17275.6511. [In Persian]
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & Izadbakhsh, M.A. (2022). The impact of climate change on groundwater level changes in future periods based on fifth report of ICCP (Case study: Razan Aquifer). Iranian Journal of Soil and Water Research53(5), 993-1008. doi:10.22059/ijswr.2022.337121.669179. [In Persian]
Ghobadian, R., Fatahi, A., & Zare, M. (2014). Studying the effects of gavoshan dam's irrigation and drainage network on groundwater of miandarband plain using GMS 6.5 model. Journal of Water Research in Agriculture, 28(4), 759-772. doi:10.22092/jwra.2015.100830. [In Persian]
Karimi, L., Motagh, M., & Entezam, I. (2019). Modeling groundwater level fluctuations in Tehran aquifer: results from a 3D unconfined aquifer model. Groundwater for Sustainable Development, 8, 439-449 .doi:https://doi.org/10.1016/j.gsd.2019.01.003
Khanlari, G., Heidari, M., Momeni, A.A., Ahmadi, M., & Taleb Beydokhti, A. (2012). The effect of groundwater overexploitation on land subsidence and sinkhole occurrences, western Iran. Quarterly Journal of Engineering Geology and Hydrogeology, 45(4), 447-456.‏ doi: https://doi.org/10.1144/qjegh2010-069
Khazaei, M., Saleh, I., Chakeralhoseini, M., & Farzin, M. (2023). Effect of water price under different allocation scenarios on crop pattern economic productivity. Water and Soil Management and Modelling, 3(3), 196-211. doi: 10.22098/mmws.2022.11764.1166. [In Persian]
Mahdavi, T., & Hoseyni, S.A. (2019). Groundwater policies and governance in arid and semi-arid regions, (reviewing current policies in developed countries). Journal of Water and Sustainable Development, 5(2), 129-140. doi: 10.22067/jwsd.v5i2.67197. [In Persian]
Moslemi, H. (2019). Assessment of groundwater crisis in arid and semiarid areas (Case study: Jaghin and Tokahor Plain). Journal of Irrigation Sciences and Engineering (Scientific Journal Of Agriculture), 42(3), 31-46. doi: 10.22055/jise.2017.19218.1384. [In Persian]
Pathak, R., Awasthi, M.K., Sharma, S.K., Hardaha, M.K., & Nema, R.K. (2018). Ground water flow modelling using MODFLOW-A review. International Journal of Current Microbiology and Applied Sciences, 7(2), 83-8.‏ doi: https://doi.org/10.20546/ijcmas.2018.702.011
Saeedpanah, I., & Mohammadzade Roofchaee, S. (2019). Exact solution of groundwater flow response in a confined aquifer to variation in river level. Iranian Journal of Ecohydrology6(4), 957-968. doi:10.22059/ije.2019.282765.1132. [In Persian]
Salehi Shafa, N., Babazadeh, H., Aghayari, F., Saremi, A., Ghafouri, M. R., Safavi, M., & Panahdar, A. (2022). Formulation of an optimized cropping pattern in order to manage groundwater level changes in Shahriar Plain. Water and Soil Management and Modelling3(2), 217-235. doi:10.22098/mmws.2022.11792.1169 [In Persian]
Sheikha BagemGhaleh, S., Babazadeh, H., Rezaei, H., & Sarai Tabrizi, M. (2023). Numerical modeling and trend analysis of Mahabad Aquifer Quantitative Status. Water and Soil Management and Modelling3(2), 1-17. doi:10.22098/mmws.2022.11275.1113. [In Persian]
Singh, A. (2014). Groundwater resources management through the applications of simulation modeling: A review. Science of the Total Environment499, 414-423.‏ doi: https://doi.org/10.1016/j.scitotenv.2014.05.048
Song, G., Huang, J.T., Ning, B.H., Wang, J.W., & Zeng, L. (2021). Effects of groundwater level on vegetation in the arid area of western China. China Geology, 4(3), 527-535. doi: https://doi.org/10.31035/cg2021062
Velayati, S., Talesh, M., & Sharifi Moghadam, M.. (2009). The analysis of decreasing water in Gonabad plain subterranean canals. Geography, 7(20-21), 47-66. [In Persian]
Wang, X., Xiao, C., Yang, W., Liang, X., Zhang, L., & Zhang, J. (2023). Analysis of the quality, source identification and apportionment of the groundwater in a typical arid and semi-arid region. Journal of Hydrology625, 130169.‏ doi:https://doi.org/10.1016/j.jhydrol.2023.130169
Zhao, X., Ding, F., Xu, J., & Zhang, J. (2021). Evaluation of groundwater exploitation scheme in water source area of kang ping power plant based on GMS. In Journal of Physics: Conference Series, 1838(1), 012049 IOP Publishing. doi: 10.1088/1742-6596/1838/1/012049