Evaluation of periodic changes in groundwater level in Bahadoran watershed yazd Provance

Document Type : Research/Original/Regular Article

Authors

1 Soil Conservation and Watershed Management Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

2 Assistant Professor, Desert Research Department, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

3 Assistant Professor, Soil Conservation and Watershed Management Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran.

4 Ph.D., Natural Resources and Watershed Management Department, Bafgh County, Yazd Province, Iran.

Abstract

Groundwater is the largest source of water in semi-arid regions. It is therefore very important to develop and exploit underground water resources in order to meet these needs. Rainfall is the main source of nutrients for many aquifers. Changes in rainfall and groundwater level depth are closely related.It is more difficult to quantify groundwater availability and the long-term effects of climate change on groundwater than surface water. Although groundwater resources are more resilient than surface water, they are increasingly vulnerable to overexploitation, drought, pollution and lack of permanent rainfall, leading to reduced quality and availability. The decrease in the quality and storage capacity of aquifers as a result of extractıon more than the available surplus is due to the development of urban areas, the use of water-based industries and an increase in the area under cultivation of agricultural products, which jeopardises underground water sources. Although human factors have a strong influence on groundwater, the natural hydrological cycle plays a key role in regulating the aquifer situation. In arid and semi-arid countries and regions of the world where surface water resources are relatively scarce, groundwater is often the most important or even the only source of water for regional food security, drinking water, economic development and environmental conservation.

Quantitative information about groundwater resources related to wells, springs, and ghanat over 17 years was provided by relevant organizations, including the Iranian Water Resources Research Organization (Tamab) and the Yazd Regional Water Organization, as well as previous research. For a more detailed investigation, the level and depth maps of underground water were drawn for a five-year period based on the available information. The zoning map of five-year underground water changes was prepared in the Arc GIS software environment to check the amount of water level drop in the observation wells. This research considered the distribution of wells, springs, and ghanat in the region and the trend of changes in their number, discharge, and annual consumption in different parts. There are 25, 122, 0, and 11 underground water sources in the region, including semi-deep wells, deep wells, springs, and ghanat. It is worth mentioning that the statistics of the selected wells in each plain were used in the calculations and drawing of the underground water maps, which have the most complete statistics during the selected period, so the number of wells mentioned in each plain is not necessarily the same as the number of wells in the piezometric network, and the length of the statistical period used was also not necessarily the entire statistical period.

According to the results, the maximum depth of underground water in the Bahadran and Shams aquifers in 2018 was 68 and 47.7 m, respectively, which reached the maximum value in the northern areas of the Bahadran and southern Shams aquifers and toward the southern areas of the Bahadran aquifer and the eastern parts. The water depth in the west of the Shams aquifer has decreased; therefore, the minimum depth of underground water in both aquifers is approximately 11.8 m. The highest level of underground water in the aquifers of the Bahadran area in 2018 was approximately 1538.91 m in the southwestern and western areas of the aquifers. Thus, in the eastern part of the Bahadran aquifer, it reached 1447.3 m and in the southern part of the Shams aquifer, it reached 1190 m this year. The level of underground water in 2013 and 2008 was higher than that in 2018, but it did not change significantly. The drop in underground water level from 2008 to 2013 and from 2013 to 2018 was approximately 13.14 and 6.68 m, respectively. Examining the changes in the underground water level during the statistical period shows that the underground water level generally has a downward trend.

In this study, was investigated the level and depth of underground water sources in the Bahadran watershed in Yazd province. The results indicate an alarming drop in the underground water table. The spatial distribution of underground water resource extraction differed throughout the watershed, so some areas experienced severe decrease in the water level. In addition, due to the use of these resources, the time distribution of water level reduction may also be different in the seasons. In the absence of surface water sources due to a decrease in adequate rainfall and resulting droughts, the majority of underground water sources are extractıon for various purposes, such as increasing the area of agricultural cultivation. This amount of underground water extraction is carried out through other water wells. Therefore, it is necessary to carry out comprehensive studies to investigate the relationship between the extent of vegetation in the area and the amount of water extractıon from underground aquifers using satellite images. In addition, it is suggested to evaluate the amount of underground water resources extractıon and charge in all watersheds of the country. The results of this study provide politicians and managers with information on changes in underground water resources in aquifers, which can be used for optimal management.

Keywords

Main Subjects


اصغری­ سرسکانرود، صیاد، صفری، شیوا، و ملانوری، الهام (1400). تخمین سطح سفره‌های آب‌ زیرزمینی متأثر از تغییرات کاربری اراضی با استفاده از داده‌های ماهواره‌ای GRACE. جغرافیا و برنامه‌ریزی محیطی، 32(4)، 86-65. doi:10.22108/GEP.2021.129410.1436
انصاری، ثمین، مساح­بورانی، علیرضا، و روزبهانی، عباس (1395). بررسی اثرات تغییر اقلیم بر تغذیه آب زیرزمینی (مطالعه موردی: دشت سفیددشت). آب و خاک، 30(2)، 416-431. doi:10.22067/jsw.v30i2.39574
بهمنش، جواد، صمدی، رقیه، و رضایی، حسین (1394). بررسی روند تغییرات تراز آب زیرزمینی (مطالعه موردی: دشت ارومیه). پژوهش­های حفاظت آب و خاک، 22(4)، 84-67. dor:20.1001.1.23222069.1394.22.4.4.2
جنوبی، رزا، رضاوردی­نژاد، وحید، بهمنش، جواد، و عباسپور، کریم (1397). بررسی تغییرات کمی آب زیرزمینی دشت میاندوآب متأثر از مدیریت بهره‌برداری از منابع آب سطحی و زیرزمینی با استفاده از مدل ریاضی .MODFLOW-NWTتحقیقات آب و خاک ایران، 49(2)، 481-467. doi:10.22059/IJSWR.2017.239340.667731
چوبین، بهرام، و ملکیان، آرش (1392). رابطه بین تغییر سطح آب زیرزمینی و روند شورشدن آن (بررسی موردی: دشت آسپاس استان فارس). مدیریت بیابان، 1(1)، 13-26. doi:10.22034/JDMAL.2013.17097
حسین­زاده­کوهی، حسین، و اردستانی، مجتبی (1403). مدل­سازی و بررسی وضعیت کمی آب­های زیرزمینی آبخوان مهیار جنوبی- دشت آسمان با استفاده از مدل MODFLOW. مدل­سازی و مدیریت آب و خاک، 4(1)، 17-1. doi:10.22098/MMWS.2022.11807.1172
رستمی­خلج، محمد، نور، حمزه، رجایی، حسین، و باقریان­کلات، علی (1403). بررسی تأثیر الگوی کشت روی تغییرات تراز آب زیرزمینی در بخشی از آبخوان دشت مشهد-چناران.       مدل‌سازی و مدیریت آب و خاک، مقاله آماده انتشار. doi:10.22098/MMWS.2024.14408.1406
رهنما، محمدباقر، سهرابی‌پور، ندا، و بارانی، غلامعباس (1399). بررسی نوسانات سطح آب زیرزمینی آبخوان شهداد. آبیاری و زهکشی ایران، 14(5)، 1663-1650. dor:20.1001.1.20087942.1399.14.5.13.4
شیخابگم­قلعه، سیمین، بابازاده، حسین، رضایی، حسین، و سرایی تبریزی، مهدی (1402). مدل­سازی عددی و تحلیل روند وضعیت کمی آبخوان مهاباد. مدل­سازی و مدیریت آب و خاک، 3(2)، 17-1. doi:10.22098/MMWS.2022.11275.1113
صالحی­شفا، نیما، بابازاده، حسین، آقایاری، فیاض، صارمی، علی، غفوری، محمدرضا، صفوی، مسعود، و پناهدار، علی (1402). تدوین الگوی کشت بهینه به­منظور مدیریت تغییرات سطح آب زیرزمینی دشت شهریار. مدل­سازی و مدیریت آب و خاک، 3(2)، 235-217. doi:10.22098/MMWS.2022.11792.1169
صمدی، جواد، و صمدی، جواد (1396). مدل‌سازی مکانی–زمانی تغییرات تراز سطح آبهای زیرزمینی مناطق شهری و روستایی آبخوان کاشان با استفاده از تکنیک‌های GIS. علوم و تکنولوژی محیط زیست، 19(1)، 77-63. doi:10.22034/jest.2017.10329
صیادی­شهرکی، عاطفه، صیادی­شهرکی، فهیمه، و بختیاری چهل چشمه، شقایق (1403). پایش شبکه تراز آب زیرزمینی دشت دزفول- اندیمشک. مدل­سازی و مدیریت آب و خاک، 4(1)، 337-326.  doi:10.22098/MMWS.2023.12414.1239
ضیایی، سینا، اسمعلی‌عوری، اباذر، مصطفی‌زاده، رئوف، و قربانی، اردوان (1400). بررسی عوامل مؤثر بر تغییرات سطح آب‌ زیرزمینی و افت آبخوان در دشت اردبیل. هیدروژئومورفولوژی، 8(28)، 143-127. doi:10.22034/hyd.2021.46333.1590
 
References
Ansari, S., Massah Bavani, A., & Roozbahani, A. (2016). Effects of climate change on groundwater recharge (Case study: Sefid Dasht plain). Journal of Water and Soil, 30(2), 416-431. doi:10.22067/jsw.v30i2.39574 [In Persian]
Asghari Saraskanroud, S., Safari, S., & Mollanouri, E. (2021). Estimation of the levels of groundwater aquifers under the influence of land-use changes by using GRACE satellite data. Geography and Environmental Planning, 32(4), 65-86. doi:10.22108/GEP.2021.129410.1436 [In Persian]
Asoka, A., & Mishra, V. (2020). Anthropogenic and climate contributions on the changes in terrestrial water storage in India. Journal of Geophysical Research: Atmospheres, 125(10), e2020JD032470. doi:10.1029/2020JD032470
Behmanesh, J., Samadi, R., & Rezaei, H. (2015). Investigation of groundwater level changes trend (Case study: Urmia plain). Water and Soil Conservation, 22(4), 67-84. dor:20.1001.1.23222069.1394.22.4.4.2 [In Persian]
Choubin, B., & Malekian, A. (2013). Relationship between fluctuations in the water table and aquifer salinization (Case study: Aquifer Aspas-Fars Province). Desert Management, 1(1), 13-26. doi:10.22034/JDMAL.2013.17097 [In Persian]
Ercin, E., Chico, D., & Chapagain, A.K. (2019). Vulnerabilities of the European Union’s economy to hydrological extremes outside its borders. Atmosphere, 10(10), 593. doi:10.3390/atmos10100593
Halder, S., Roy, M.B., & Roy, P.K. (2020). Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: a case study of an eastern river basin of West Bengal, India. SN Applied Sciences, 2, 1-24. doi:10.1007/s42452-020-2302-6
Hanifian, S., Khaleghi, M.R., Najarchi, M., Jafarnia, R., & Varvani, J. (2024). A comparative study of artificial neural networks and multivariate regression for predicting groundwater depths in the Arak aquifer. Acta Geophysica, 72(1), 419-432. doi:10.1007/s11600-023-01050-3
Janardhanan, S., Nair, A.S., Indu, J., Pagendam, D., & Kaushika, G.S. (2023). Estimation of groundwater storage loss for the Indian Ganga Basin using multiple lines of evidence. Scientific Reports, 13, 1797. doi:10.1038/s41598-023-28615-y
Jonubi, R., Rezaverdinejad, V., Behmanesh, J., & Abbaspour, K. (2018). Investigation of quantitative changes in the groundwater table of Miandoab plain affected by surface and groundwater resources management using the MODFLOW-NWT mathematical model. Iranian Journal of Soil and Water Research49(2), 467-481.  doi:10.22059/IJSWR.2017.239340.667731 [In Persian]
Krishnamoorthy, N., Thirumalai, R., Sundar, M.L., Anusuya, M., Kumar, P.M., Hemalatha, E., Mohan Prasad, M., & Munjal, N. (2023). Assessment of underground water quality and water quality index across the Noyyal River basin of Tirupur District in South India. Urban Climate, 49, 101436. doi:10.1016/j.uclim.2023.101436
Kubiak-Wójcicka, K., & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. doi:10.3390/geosciences10080312
Liu, M., Nie, Z., Liu, X., Wang, L., & Cao, L. (2024). Change in groundwater table depth caused by natural change and human activities during the past 40 years in the Shiyang River Basin, northwest China. Science of the Total Environment, 906, 167722. doi:10.1016/j.scitotenv.2023.167722
Mohamed, A., Alarifi, S.S., & Mohammed, M.A. (2024). Geophysical monitoring of the groundwater resources in the Southern Arabian Peninsula using satellite gravity data. Alexandria Engineering Journal, 86, 311-326. doi:10.1016/j.aej.2023.11.060
Nyakundi, R., Nyadawa, M., & Mwangi, J. (2022). Effect of recharge and abstraction on groundwater levels. Civil Engineering Journal, 8(5), 910-925. doi:10.28991/CEJ-2022-08-05-05
Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072. doi:10.1126/science.1128845
Pulido-Velazquez, M., Peña-Haro, S., García-Prats, A., Mocholi-Almudever, A.F., Henríquez-Dole, L., Macian-Sorribes, H., & Lopez-Nicolas, A. (2015). Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrology and Earth System Sciences, 19(4), 1677-1693. doi:10.5194/hess-19-1677-2015
Rahnama, M., Sohrabipour, N., & Barani, G. (2020). Investigation of Groundwater Level Variations in Shahdad Aquifer. Iranian Journal of Irrigation & Drainage, 14(5), 1650-1663. dor:20.1001.1.20087942.1399.14.5.13.4 [In Persian]
Rostami Khalaj, M., Noor, H., Rajayi, H., & Bagherian Kalat, A. (2024). Investigating the effect of cropping pattern on changes in underground water level in a part of Mashhad-Chenaran plain aquifer. Water and Soil Management and Modelling, In Press. doi:10.22098/MMWS.2024.14408.1406 [In Persian]  
Rusli, S.R., Bense, V.F., Taufiq, A., & Weerts, A.H. (2023). Quantifying basin-scale changes in groundwater storage using GRACE and one-way coupled hydrological and groundwater flow model in the data-scarce Bandung groundwater Basin, Indonesia. Groundwater for Sustainable Development, 22, 100953. doi:10.1016/j.gsd.2023.100953
Rust, W., Holman, I., Bloomfield, J., Cuthbert, M., & Corstanje, R. (2019). Understanding the potential of climate teleconnections to project future groundwater drought. Hydrology and Earth System Sciences, 23(8), 3233-3245. doi:10.5194/hess-23-3233-2019
Salehi Shafa, N., Babazadeh, H., Aghayari, F., Saremi, A., Ghafouri, M.R., Safavi, M., & Panahdar, A. (2023). Formulation of an optimized Cropping pattern in order to manage groundwater level changes in Shahriar Plain. Water and Soil Management and Modelling, 3(2), 217-235. doi:10.22098/MMWS.2022.11792.1169 [In Persian]  
Samadi, J., & Samadi, J. (2017). Spatial-temporal modeling of groundwater level variations of urban and rural areas in Kashan aquifer using GIS techniques. Journal of Environmental Science and Technology, 19(1), 63-77. doi:10.22034/jest.2017.10329 [In Persian]
Satizábal-Alarcón, D.A., Suhogusoff, A., & Ferrari, L. C. (2024). Characterization of groundwater storage changes in the Amazon River Basin based on downscaling of GRACE/GRACE-FO data with machine learning models. Science of The Total Environment, 912, 168958. doi:10.1016/j.scitotenv.2023.168958
Sayadi Shahraki, A., Sayadi Shahraki, F., & Bakhtiari Chahelcheshmeh, Sh. (2024). Monitoring groundwater level network of Dezful-Andimeshk plain. Water and Soil Management and Modelling, 4(1), 326-337. doi:10.22098/MMWS.2023.12414.1239 [In Persian]
Sheikha BagemGhaleh, S., Babazadeh, H., Rezaei, H., & Sarai Tabrizi, M. (2023). Numerical Modeling and Trend Analysis of Mahabad Aquifer Quantitative Status. Water and Soil Management and Modelling, 3(2), 1-17. doi:10.22098/MMWS.2022.11275.1113 [In Persian]
Simmers, I. (1997). Recharge of Phreatic Aquifers in (Semi) Arid Areas. IAH International Contributions to Hydrogeology 19, Taylor & Francis Group, London, 240 pages. doi:10.1201/9780203741191
Yazdanpanahi, A., Akbari, M., & Behrangmanesh, M. (2018). Spatio-temporal variable of groundwater parameters using geo-statistical methods in Mashhad Plain. Extension and Development of Watershed Management, 6(20), 25-34. [In Persian]
Younger, P.L. (2009). Groundwater in the environment: an introduction. John Wiley & Sons. 336 pages. ISBN: 978-1-444-30904-1
Zhang, X., Wu, X., Zhao, R., Mu, W., & Wu, C. (2022). Identifying the facts and driving factors of deceleration of groundwater table decline in Beijing during 1999–2018. Journal of Hydrology607, 127475. doi:10.1016/j.jhydrol.2022.127475
Ziaye Shendershami, S., Esmali Ouri, A., Mostafazadeh, R., & Ghorbani, A. (2021). Effective factors in ground water variations and water table decrease in Ardabil Plain. Hydrogeomorphology, 8(28), 127-143. doi:10.22034/hyd.2021.46333.1590 [In Persian]