Investigation of the effect of soil salinity and water quality on saffron daughter corms using crop modeling and measured data

Document Type : Research/Original/Regular Article

Authors

1 Former M.Sc. Student, Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Water Sciences and Engineering, Faculty of Agriculture, Ferdowsi University Mashhad, Mashhad, Iran

3 Assistant Professor, Department of Water Sciences and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Introduction

About 70% of the total freshwater withdrawal from resources is used in the agricultural sector. Water and soil salinity is one of the most important problems in the agricultural sector in arid and semi-arid regions. In such areas that are facing water shortages, saline water is commonly used in irrigated lands and it will be of great help in preserving freshwater resources. Crop modeling in combination with field measurements is an efficient method to improve water productivity in the field and investigate the crop's biological response to different field conditions. Several crop models have been developed for crop growth simulation. Among these models, AquaCrop software has been widely studied in recent years. AquaCrop software is able to simulate the growth process under different conditions with few input data that can be easily measured in the field. Few studies have been conducted on saffron crop modeling with AquaCrop software, but this model has not yet been calibrated to simulate salinity during the growing season. This research was carried out to calibrate the AquaCrop software for simulating the variations of soil salinity in the root zone of two-year-old saffron. In addition, in the present study, the effect of different levels of salinity and the application of different levels of organic mulch and their mutual effect on the yield of daughter corms, biomass, and water productivity were investigated.

Material and Methods

To calibrate the AquaCrop software for two-year saffron during the growing season in the research farm of the Ferdowsi University of Mashhad (FUM), growth parameters of saffron crop such as the soil moisture and salinity, the dry weight of daughter corms and the crop canopy cover were continuously measured during the growing season. Soil moisture and salinity were measured at least once a week, and the dry weight of daughter corms was measured biweekly. After model calibration, the accuracy of the model for simulating soil salinity during the growing season was evaluated by comparing the measured and simulated values. Statistical indicators of Pearson correlation coefficient, root mean square error, and Nash Sutcliffe model efficiency coefficient, were used to evaluate the accuracy of crop model simulation. The model was subsequently run for different initial conditions of soil salinity and irrigation water salinity. The dry weight of daughter corm, biomass, and ET water productivity were monitored for different conditions. Then, the model was run in the same conditions of water and soil salinity under the application of organic mulch, and the effect of mulch on the yield of daughter corms and evapotranspiration water productivity under salinity stress was investigated.

Results and Discussion

The statistical indicators between the measured and simulated values of soil moisture, canopy cover, and biomass approved the capability of AquaCrop for simulating saffron growth. Then, according to the measured salinity values of the root zone using the TDR sensor, AquaCrop was recalibrated to simulate soil salinity. Afterward, the changes in the measured salinity values of the root zone during the growing season were compared with the values simulated by AquaCrop. The Pearson correlation coefficient for measured and simulated soil salinity by software was 0.9 and the root mean square error was 0.086 dS m-1. Nash–Sutcliffe efficiency was 0.66, showing the high accuracy of AquaCrop for simulating soil salinity. The results of the crop growth simulation in saline conditions show the sensitivity of saffron to salinity. The results showed that under no initial salinity (0.5 dS m-1) in the soil, increasing the salinity of irrigation water from 1 dS m-1 to 4 dS m-1 caused a decrease of 3.7 % in the daughter corms weight. In addition, considering the initial salinity of 2 dS m-1, increasing the salinity of the irrigation water has a significant effect on reducing the daughter corm weight. In the presence of high-quality irrigation water (0.5 dS m-1), increasing the initial salinity of the soil from no salinity (0.5 dS m-1) to 4 dS m-1 caused a 38% decrease in the weight of daughter corms. The effect of organic mulch was also evaluated under saline water irrigation conditions. The results showed that the use of organic mulch with 100% coverage in water and soil salinity conditions equal to 4 dS m-1 can mitigate the effect of salinity stress by increasing 51% of daughter corm weight.

Conclusion

Water and soil salinity and its related problems are limiting factors in agricultural production in arid and semi-arid regions. The expansion of irrigation methods with saline water without proper management can lead to the risk of soil quality loss and in turn the loss of agricultural lands in the long term. In this research, the AquaCrop model was calibrated to simulate soil salinity during the saffron growing season, and the effect of organic mulch on soil and water salinity conditions was evaluated on the yield of daughter corms. The findings of this research will be of great help to farmers and water experts in improving the performance of saffron in saline soil and irrigation water.

Keywords

Main Subjects


منابع
اصغری، رضا، داداشی، محمدرضا، رضوی، سید علیرضا، فیضی، حسن و بختیاری، سعید (1398). تأثیر کود گاوی بر عملکرد و خصوصیات مورفولوژیک و فیزیولوژیک زعفران تحت تنش شوری (Crocus sativus L.). زراعت و فناوری زعفران، 7(2)، 171-184. doi: 10.22048/jsat.2018.98710.1257
اکبری، امیر، ضیائی، علی‌نقی، ناقدی‌فر، سیدمحمدرضا، رضوانی‌مقدم، پرویز و غلامی شرفخانه، مهدی (1402). بهبود برنامه‌ریزی آبیاری زعفران با استفاده از اندازه‌گیری‏‌های میدانی و مدل‌سازی گیاهی. زراعت و فناوری زعفران، 11(1)، 53-69. doi:10.22048/jsat.2023.386578.1481
باقریفام، صبا، دلاور، محمد امیر، کشاورز، پیمان و کرمی، پرویز (1401). اثر تغییرات اقلیمی بر مقادیر ذخایر کربن آلی خاک اقلیم نیمه‌خشک مشهد با استفاده از مدل RothC. تحقیقات آب و خاک ایران، 53(10)، 2349-2363. doi:10.22059/ijswr.2022.346264.669327
جهان‌تیغ، منصور، جهان تیغ، معین، دهمرده، خداداد و بیات، رضا (1401). تأثیر تغییرات شوری و روش آبیاری بر رشد محصولات گل‌محمدی و چای‌ترش در دشت سیستان. مدل‌سازی و مدیریت آب و خاک، 3(4)، 181-191. doi: 10.22098/mmws.2023.12061.1199
کهخامقدم، پریسا، ضیایی، علی نقی، داوری، کامران، کانونی، امین و صادقی، صدیقه (1403). برنامه‌ریزی و تحویل بهینة آب در شبکه‌های آبیاری با ترکیب مدل AquaCrop و الگوریتم ژنتیک. مدل‌سازی و مدیریت آب و خاک، 4(4)، 255-268. doi: 10.22098/mmws.2023.14039.1382
مسافری ضیاالدینی، حسن، علیزاده، امین و رضوانی مقدم، پرویز (1399). اثر رژﻳﻢ‌ﻫﺎى ﻣﺨﺘﻠﻒ آﺑﻴﺎرى ﺑﺮ ﻛﺎراﻳﻰ ﻣﺼﺮف آب زعفران در خراسان رضوی (ﻣﻨﻄﻘﺔ باخرز). زراعت و فناوری زعفران، 8(4)، 497-510. doi: 10.22048/jsat.2020.225629.1389
ناتوان، زهره، مرادی، روح الله، نقی زاده، مهدی و پورقاسمیان، نسیبه (1401). اثر انواع مالچ شیمیایی و آلی بر خصوصیات فیزیکوشیمیایی خاک و عملکرد کمی و کیفی کلاله زعفران در منطقه قائنات. زراعت و فناوری زعفران، 10(4)، 325-341. doi: 10.22048/jsat.2022.368175.1473
نایبی، جاوید، حاجی‌راد، ایمان، پورغلام آمیجی، مسعود، آذری، اردوان و پناهزاده، سیامک (1403). ارزیابی وضعیت انواع روش‌های آبیاری در اراضی حکم‌آباد شهر تبریز با روش چارلز برت. مدل‌سازی و مدیریت آب و خاک، 4(3)، 253-268. doi: 10.22098/mmws.2023.13078.1301
References
Abedinpour, M., Sarangi, A., Rajput, T.B.S., Singh, M., Pathak, H., & Ahmad, T., (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management. 110, 55–66. doi:10.1016/j.agwat.2012.04.001
Akbari, A., Ziaei, A., Naghedifar, S. M., Rezvani Moghaddam, P., & Gholami Sharafkhane, M. (2023). Improving saffron irrigation scheduling using field measurements and plant modeling. Saffron Agronomy and Technology, 11(1), 53-69. doi:10.22048/jsat.2023.386578.1481. [In Persian]
Al-Dhuhli, H. S., Al-Rawahy, S. A., & Prathapar, S. (2010). Effectiveness of mulches to control soil salinity in sorghum fields irrigated with saline water. the Monograph on Management of Salt-Affected Soils and Water for Sustainable Agriculture, edited by: Mushtaque, A., Al-Rawahi, SA, and Hussain, N., Sultan Qaboos University, Oman, 41-46.
Allen, R. G. (1998). Crop Evapotranspiration-Guideline for computing crop water requirements. Irrigation and Drain, 56, 300.
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100(1), 1–8. doi:10.1016/j.agwat.2011.08.023.
Asghari, R., Dadashi, M., razavi, A., Feizi, H., & bakhtiari, S. (2019). Effect of cow manure on yield and morphological and physiological characteristics of saffron (Crocus sativus L.) under salinity stress. Saffron Agronomy and Technology, 7(2), 171-184. doi:10.22048/jsat.2018.98710.1257. [In Persian]
Bagherifam, S., Delavar, M. A., Keshavarz, P., & Karami, P. (2022). Modeling the impact of climate change on soil organic carbon pools in the semi-arid climate of Mashhad using the RothC model. Iranian Journal of Soil and Water Research, 53(10), 2349-2363. doi:10.22059/ijswr.2022.346264.669327. [In Persian]
Chen, S., Jiang, T., Ma, H., He, C., Xu, F., Malone, R. W., Feng, H., Yu, Q., Siddique, K. H. M., & He, J. (2020). Dynamic within-season irrigation scheduling for maize production in Northwest China: A method based on weather data fusion and yield prediction by DSSAT. Agricultural and Forest Meteorology, 285, 107928. doi:10.1016/j.agrformet.2020.107928.
Dastranj, M., & Sepaskhah, A. R. (2019). Saffron response to irrigation regime, salinity and planting method. Scientia Horticulturae, 251, 215-224. doi:10.1016/j.scienta.2019.03.027.
Ebrahimipak, N., Ahmadee, M., Egdernezhad, A., Khashei Suiki, A., 2018. Evaluation of AquaCrop to simulate saffron (Crocus sativus l.) yield under different water management scenarios and zeolite amounts. Journal of Water and Soil Resources Conservation 8(1), 117–132.
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448459. doi:10.2134/agronj2008.0218s.
Jahantigh, M. , Jahantigh, M. , Dhemardhe, K. and Bayat, R. (2023). The effect of changes in salinity and irrigation method on the growth of Rose and Hibiscus sabdariffa crops in the Sistan plain. Water and Soil Management and Modelling, 3(4), 181-191. doi: 10.22098/mmws.2023.12061.1199. [In Persian]
Kahkhamoghadam, P. , Ziaei, A. N. , Davary, K. , Kanooni, A. and Sadeghi, S. (2024). Scheduling and optimal delivery of water in irrigation networks by combining the AquaCrop model and genetic algorithm. Water and Soil Management and Modelling, 4(4), 255-268. doi:10.22098/mmws.2023.14039.1382. [In Persian]
Malik, A., Shakir, A. S., Ajmal, M., Khan, M. J., & Khan, T. A. (2017). Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management, 31, 4275-4292. doi:10.1007/s11269-017-1745-z
Minhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 227, 105832. doi:10.1016/j.agwat.2019.105832
Mirsafi, Z. S., Sepaskhah, A. R., Ahmadi, S. H., & Kamgar-Haghighi, A. A. (2016). Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Scientia Horticulturae, 211, 343-351. doi:10.1016/j.scienta.2016.09.020.
Mosaferyzyaaldiny, H. , Alizadeh, A., & Rezvani Moghaddam, P. (2020). Effect of Irrigation Regimes on Crop Water Use Efficiency of saffron (Case study: The Bakharz region of Khorasan Razavi, Iran). Saffron Agronomy and Technology, 8(4), 497-510. doi:10.22048/jsat.2020.225629.1389. [In Persian]
Mzabri, I., Rimani, M., Charif, K., Kouddane, N., & Berrichi, A. (2021). Study of the Effect of Mulching Materials on Weed Control in Saffron Cultivation in Eastern Morocco. The Scientific World Journal, 2021. doi: 1155/2021/9727004.
Natavan, Z. , Moradi, R. , Naghizadeh, M. and Pourghasemian, N. (2023). Effect of various chemical and organic mulch types on soil phyisico-chemical characteristics and qualitative and quantitative yield of saffron in Qaenat region. Saffron Agronomy and Technology, 10(4), 325-341. doi: 10.22048/jsat.2022.368175.1473. [In Persian]
Nayebi, J., Hajirad, I., Pourgholam-Amiji, M., Azari, A., & Panahzadeh, S. (2024). Assessing the status of various irrigation methods in Hokmabad lands of Tabriz city with the Charles Burt method. Water and Soil Management and Modelling, 4(3), 253-268. doi: 10.22098/mmws.2023.13078.1301. [In Persian]
Pirasteh‐Anosheh, H., Babaie‐Zarch, M. J., Nasrabadi, M., Parnian, A., Alavi‐Siney, S. M., Beyrami, H., & Race, M. (2023). Climate and management factors influence saffron yield in different environments. Agrosystems, Geosciences and Environment, e20418. doi:10.1002/agg2.20418.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), 438–447. doi:10.2134/agronj2008.0140s.
Sepaskhah, A. R., & Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. The Journal of Horticultural Science and Biotechnology, 84(2), 216-222. doi: 10.1080/14620316.2009.11512507.
Sepaskhah, A.R., Amini-Nejad, M., & Kamgar-Haghighi, A.A., (2013). Developing a dynamic yield and growth model for saffron under different irrigation regimes. International Journal of Plant Production. 7 (3), 437–504. doi:10.22069/ijpp.2013.1115
Shanono, N. J., Abba, B. S., & Nasidi, N. M. (2022). Evaluation of Aqua-Crop model using onion crop under deficit irrigation and mulch in semi-arid Nigeria. Turkish Journal of Agricultural Engineering Research, 3(1), 131-145. doi:10.46592/turkager.1078082.
Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. doi: 10.2134/agronj2008.0139s.
Yarami, N., & Sepaskhah, A. R. (2015). Saffron response to irrigation water salinity, cow manure and planting method. Agricultural Water Management, 150, 57-66. doi:10.1016/j.agwat.2014.12.004
Yarami, N., & Sepaskhah, A. R. (2016a). Effect of irrigation water salinity, manure application and planting method on qualitative compounds of saffron (Crocus sativus L.). International Journal of Plant Production, 10(2). doi:10.22069/ijpp.2016.2784.
Yarami, N., & Sepaskhah, A.R. (2016b). Modification of the saffron model for growth and yield prediction under different irrigation water salinity, manure application and planting methods. International Journal of Plant Production, 10 (2). doi: 10.22069/ijpp.2016.2787.
Zhao, Y., Li, Y., Wang, J., Pang, H., & Li, Y. (2016). Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil and Tillage Research, 155, 363-370. doi: 10.1016/j.still.2015.08.019.
Zhao, Y., Pang, H., Wang, J., Huo, L., & Li, Y. (2014). Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research, 161, 16-25. doi: 10.1016/j.fcr.2014.02.006.