Determining the areas prone to the growth of Rhume ribes L. species in Razavi Khorasan Province using machine learning models

Document Type : Research/Original/Regular Article

Authors

1 Former Ph.D. Student, Department of Natural Resources Engineering, Faculty of Agriculture & Natural Resources, University of Hormozgan, Bandar Abbas, Iran

2 Associate Professor, Range and Watershed Management, Faculty of Natural Resource, University of Birjand, Birjand, Iran

3 Ph.D. Student, Department of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran

4 Former M.Sc. Student, Department of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran

Abstract

Introduction
In recent years, advancements in computer technologies, remote sensing systems, software, and various models have enabled the prediction of ecological niches for diverse plant and animal species. Over the past decades, alterations in human lifestyles, industrialization, and production processes have resulted in increased atmospheric pollutants, leading to severe climate change. Global climate change has induced shifts in plant growth ranges, with an expansion of warm-weather-adapted plants and a decline in cold-weather-adapted ones. These changes consequently modify the structure and ecosystems of the entire planet, directly and indirectly impacting ecosystem services crucial for human well-being and economic prosperity. Consequently, predicting the effects of climate change on plant distribution has emerged as a pivotal research area to inform conservation strategies and programs. Species distribution models primarily predict the impact of climate change on plant growth ranges. Accurate predictions of species distribution are essential for effective conservation planning and sustaining forest ecosystem services in the face of climate change. Given the significance of this issue, this research aimed to identify the most critical climatic and environmental factors influencing the distribution of Rhume ribes L. species and ascertain its current geographical range within Razavi Khorasan Province, located in northeastern Iran.
 
Materials and Methods
For this purpose, 68 bioclimatic variables including soil characteristics (45 cases), topographical factors (four cases), and climatic factors (19 cases) were first subjected to correlation analysis as predictive variables and variables with high correlation (above 80%) were removed. Due to the large size of the studied area, sampling of presence points was done with field visits during the period of 1400-1401 of the introduced areas, and a total of 232 presence points from eight regions were registered as presence points using the global positioning system (GPS). Then all the environmental data and presence points in R software using Biomed 2 package models which include GLM, GBM, GAM, CTA, ANN, SRE, FDA, MARS, RF, and MaxEnt models in determining the relationship between vegetation and environmental factors in pastures Razavi Khorasan Province was predicted in the present time. The accuracy of the models was evaluated using the values of KAPPA, TSS, and ROC indices, which are prominent and widely used indices for determining and identifying the potential areas.
 
Results and Discussion
The results of this research showed that according to the accuracy evaluation index, the best modeling for the current time is the random forest model with an accuracy of 95.5%, which indicates the accuracy of the modeling at an excellent level. Also, the relative importance of the selected models and the variables that have had the greatest impact at present include digital elevation model (DEM), Average monthly (BIO2), This is the sum of all total monthly precipitation values (BIO12), The average temperatures experienced during the wettest quarter (BIO 8) and the amount of sand at a depth of 15-30 cm from the soil surface (Sand 15-30), which indicates the great influence of climatic factors on the distribution of this species, and in the next stage, the height above sea level and finally the soil factors have the greatest influence. The most distribution of Rhume ribes L. species at present is in the east of Razavi Khorasan Province including the cities of Bakharz, Torbat Jam, Taibad, Zaveh, Khaf, and Rashtkhwar in the form of a strip on their border and in the west of the Province on the border of Koh Sorkh and Neishabur cities and the north of the Province on the border Binaloud, Zabarkhan and Mashhad cities and the south of the Province in Gonabad city has spread in a strip and limited way.
 
Conclusion
The results of this research can be used to improve, protect, and economically exploit and expand the habitat of the Rhume ribes L. species. Destructive human activities, such as livestock grazing and the corrupt exploitation of rhubarb, combined with climate change, have endangered the current habitats of this species in Razavi Khorasan Province. These unprincipled exploitations, disregarding environmental capacities in natural resource management, are a significant problem in Razavi Khorasan Province and the country, gradually leading to water, soil, and plant loss in the region. While this study sufficiently examined current climatic and soil factors to identify areas suitable for rhubarb species, a deeper understanding is required to effectively restore damaged areas, preserve those at risk, and enhance the predictive capabilities of ecological models. In addition to climatic and soil factors, the potential habitats of plant species are influenced by various factors, including human activities, exploitation methods, livestock grazing, wildlife, economic and social conditions, and other direct and indirect impacts on distribution. Numerous studies have been conducted on different plant species. This research evaluated various machine learning-based species distribution models, selecting random forests as the most suitable. Species distribution models are valuable, cost-effective tools for natural resource managers, increasing their awareness and decision-making abilities regarding the effects of climate change on species.

Keywords

Main Subjects


Abdollahi, J., Arzani, H., Naderi, H., & Arab Zade, M.R. (2012). Effect of precipitation and high temperature variability on forage production of some plant species in the Yazd steppe rangelands during the period of 2000-2008 (Case study: Ernan region). Journal of Arid Biome, 2(1), 58-69. doi: 20.1001.1.2008790.1391.2.1.5.0. [In Persian]
Barnes, P.W., & Harrison, A.T. (1982). Species distribution and community organization in a Nebraska sandhills mixed prairie as influenced by plant/soil-water relationships. Oecologia52, 192-201. doi:10.1007/BF00363836
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters15(4), 365-377. doi:10.1111/j.1461-0248.2011.01736.x
Chaves, P.P., Ruokolainen, K., & Tuomisto, H. (2022). Impact of spatial configuration of training data on the performance of Amazonian tree species distribution models. Forest Ecology and Management504, 119838. doi:10.1016/j.foreco.2021.119838
Cheng, Y.Y., Chan, P.P., & Qiu, Z.W. (2012). Random forest based ensemble system for short term load forecasting. In 2012 International Conference On Machine Learning And Cybernetics, 1(52-56). IEEE. doi:10.1109/ICMLC.2012.6358885
Dai, G., Ding, K., Cao, Q., Xu, T., He, F., Liu, S., & Ju, W. (2019). Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. European Journal of Pharmacology859, 172525. doi:10.1016/j.ejphar.2019.172525
Damaneh, J.M., Ahmadi, J., Rahmanian, S., Sadeghi, S.M.M., Nasiri, V., & Borz, S.A. (2022). Prediction of wild pistachio ecological niche using machine learning models. Ecological Informatics, 72, 101907. doi:10.1016/j.ecoinf.2022.101907
Díaz-Varela, R.A., Colombo, R., Meroni, M., Calvo-Iglesias, M.S., Buffoni, A., & Tagliaferri, A. (2010). Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts. Ecological Modelling221(4), 621-633. doi:10.1016/j.ecolmodel.2009.11.010
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y.E., & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions17(1), 43-57. doi;10.1111/j.1472-4642.2010.00725.x
Ernakovich, J.G., Hopping, K.A., Berdanier, A.B., Simpson, R.T., Kachergis, E.J., Steltzer, H., & Wallenstein, M.D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology20(10), 3256-3269. doi:10.1111/gcb.12568
Fallah Huseini, H., Heshmat, R., Mohseni, F., Jamshidi, A., Alavi, S., Ahvasi, M., & Larijani, B. (2008). The Efficacy of Rheum Ribes L. stalk extract on lipid profile in hypercholesterolemic type ii diabetic patients: a randomized, double-blind, placebo - controlled, clinical trial. Journal of Medicinal Plants, 7(27), 92-97. http://jmp.ir/article-1-443-en.html. [In Persian]
Fallah Huseini, H., Larijani, B., Fakhrzadeh, H., Akhondzadeh, S., Radjabipour, B., Toliat, T., & Heshmat, R. (2004). The efficacy of silymarin on hypercholrsterolemic type II diabetic patients. Iranian Journal of Diabetes and Lipid Disorders3(2), 201-206. http://ijdld.tums.ac.ir/article-1-447-fa.html. [In Persian]
Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, S.N., , Quisiyupanqui, M.N.R., & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography38(4), 783-791. doi:10.1111/j.1365-2699.2010.02444.x
Fielding, A.H., & Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation24(1), 38-49. doi:10.1017/S0376892997000088
Flagmeier, M., Long, D.G., Genney, D.R., Hollingsworth, P.M., Ross, L.C., & Woodin, S. J. (2014). Fifty years of vegetation change in oceanic-montane liverwort-rich heath in Scotland. Plant Ecology & Diversity7(3), 457-470. doi:10.1080/17550874.2013.817487
Galton, F. (1892). Finger prints (No. 57490-57492). Macmillan and Company. https://scholar.google.com/scholar_lookup?title=Finger%20prints%20%28No.%2057490-57492%29&publication_year=1892&author=Galton%2CF
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters8(9), 993-1009. doi:10.1111/j.1461-0248.2005.00792.x
Guo, Y., Li, X., Zhao, Z., Wei, H., Gao, B., & Gu, W. (2017). Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Scientific reports7(1), 46221. doi:10.1038/srep46221
Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., & Tatian, M.R. (2017). Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros. Journal of RS and GIS for Natural Resources8(3), 1-14. dor:20.1001.1.26767082.1396.8.3.1.8. [In Persian]
Helm, A., Hanski, I., & Pärtel, M. (2006). Slow response of plant species richness to habitat loss and fragmentation. Ecology letters9(1), 72-77. doi:10.1111/j.1461-0248.2005.00841.x
Hu, B., Zhang, H., Meng, X., Wang, F., & Wang, P. (2014). Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages. Journal of Ethnopharmacology153(3), 846-853. doi:10.1016/j.jep.2014.03.059
Jafari, A., Taheri, G., Baradaran, B., & Bahrami, A. R. (2012). Rheum khorasanicum (Polygonaceae), a new species from Iran. In Annales Botanici Fennici, 49(4), 255-258. doi:10.5735/085.049.0406
Jarvie, S., & Svenning, J.C. (2018). Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences373(1761), 20170446. doi:10.1098/rstb.2017.0446
Kargar, M., Jafarian, Z., Tamartash, R., & Alavi, S. J. (2018). Comparison of non-parametric and parametric species distribution models (SDM) in determining the habitat of dominant rangeland species (case study: Khetteh Riz Rangelands). Iranian Journal of Range and Desert Research25(3), 512-521. doi: 10.22092/ijrdr.2018.117794. [In Persian
Koch, O., De Avila, A.L., Heinen, H., & Albrecht, A. T. (2022). Retreat of major European Tree species distribution under climate change—minor natives to the rescue?. Sustainability14(9), 5213. doi:10.3390/su14095213
Kumari, N., Srivastava, A., & Dumka, U.C. (2021). A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate9(7), 109. doi:10.3390/cli9070109
Kwon, H.C., Kim, T.Y., Lee, C.M., Lee, K.S., & Lee, K.K. (2019). Active compound chrysophanol of Cassia tora seeds suppresses heat-induced lipogenesis via inactivation of JNK/p38 MAPK signaling in human sebocytes. Lipids in Health and Disease18(1), 1-8. doi:10.1186/s12944-019-1072-x
Li, A., Gao, Z., Mao, Z. (Eds.).(1998). Flora of China; Science Press: Beijing, China,
Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., & Farashi, A. (2021). Properly predict the growth of (Ferula assa-foetida L.) in northeastern Iran using the maximum entropy model. Iranian Journal of Range and Desrt Research, 28(3), 578-592 doi:10.22092/IJRDR.2021.125016. [In Persian]
Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., & Farrashi, A. (2022b). Predicting the geographical distribution of the genus Ferula (Ferula spp.) using habitat suitability modeling (Case study: Razavi and North Khorasan Provinces). Ecosystem Management, 2(1), 25-35. doi: 10.22034/emj.2022.252812. [In Persian]
Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., & Farashi, A. (2022). Prediction of potential habitats of Astracantha gossypina (Fisch.) Using the maximum entropy model in regional scale. Journal of Plant Ecosystem Conservation9(19), 217-236. http://pec.gonbad.ac.ir/article-1-737-en.html. [In Persian]
Momeni Damaneh, J., Tajbakhsh, S. M., Ahmadi, J., & Safdari, A.A. (2022a). Comparison of species distribution models in determining the habitat landscape of Pistacia vera L. specie in Razavi Khorasan province. Water and Soil Management and Modeling. 3(4), 77-92 doi:10.22098/mmws.2022.11698.1160. [In Persian]
Mozaffarian V. (2007). dictionary of Iranian plant names. Tehran: Farhange Moaser. 457–457 [In Persian]
Naqishbandi, A.M., Josefsen, K., Pedersen, M.E., & Jäger, A.K. (2009). Hypoglycemic activity of Iraqi Rheum ribes root extract. Pharmaceutical biology47(5), 380-383. doi:10.1080/13880200902748478
Oksanen, J., & Minchin, P.R. (2002). Continuum theory revisited: What shape are species responses along ecological gradients?. Ecological Modelling157(2-3), 119-129. doi:10.1016/S0304-3800(02)00190-4
Piri Sahragard, H., & Pahlavan-Rad, M.R. (2020). Prediction of soil properties using random forest with sparse data in a semi-active volcanic mountain. Eurasian Soil Science53, 1222-1233. doi:10.1134/S1064229320090136
Polechová, J., & Storch, D. (2008). Ecological niche. Encyclopedia of Ecology2, 1088-1097.
Pouyan, S., Rahmanian, S., Amindin, A., & Pourghasemi, H.R. (2022). Spatial and seasonal modeling of the land surface temperature using random forest. In Computers in Earth and Environmental Sciences (221-234). doi:10.1016/B978-0-323-89861-4.00035-X
Rahmanian, S., Pouyan, S., Karami, S., & Pourghasemi, H.R. (2022). Predictive habitat suitability models for Teucrium polium L. using boosted regression trees. In Computers in Earth and Environmental Sciences, 245-254. doi:10.1016/B978-0-323-89861-4.00029-4
Renner, I.W., & Warton, D.I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics69(1), 274-281. doi:10.1111/j.1541-0420.2012.01824.x
Sarhangzadeh, J. (2019). Habitat suitability modeling for Juniper (Juniperus foetidissima) in Arasbaran Biosphere Reserve. Forest Research and Development5(1), 93-112. doi:10.30466/JFRD.2019.120689. [In Persian]
Smeeton, N.C. (1985). Early history of the kappa statistic. Biometrics41, 795.
Sproull, G.J., Quigley, M.F., Sher, A., & González, E. (2015). Long‐term changes in composition, diversity and distribution patterns in four herbaceous plant communities along an elevational gradient. Journal of Vegetation Science26(3), 552-563. doi:10.1111/jvs.12264
Sun, J., Luo, J.W., Yao, W.J., Luo, X.T., Su, C.L., & Wei, Y.H. (2019). Effect of emodin on gut microbiota of rats with acute kidney failure. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 44(4), 758-764. doi:10.19540/j.cnki.cjcmm.20181105.002 
Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science240(4857), 1285-1293. doi:10.1126/science.3287615
Thuiller, W. (2014). Editorial commentary on ‘BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change’. Global change biology20(12), 3591-3592. doi:10.1111/gcb.12728
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M.B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography32(3), 369-373. doi:10.1111/j.1600-0587.2008.05742.x
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J.M, Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature416(6879), 389-395. doi.org/10.1038/416389a
Wani, I.A., Khan, S., Verma, S., Al-Misned, F.A., Shafik, H.M., & El-Serehy, H.A. (2022). Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports12(1), 13205. doi:10.1038/s41598-022-16837-5
Zarabi, M., Haghdadi, R., & Yousefi, H. (2017). Habitat utility modeling of organic (wild) pistachios (Pistacia vera) using Maximum Entropy Method (MaxEnt) in Sarakhs Forest Area (Gonbadli in Khorasan province). Iranian journal of Ecohydrology4(3), 817-824. doi:10.22059/IJE.2017.62636. [In Persian]
Zare Chahouki, M.A., & abbasi, M. (2018). Habitat prediction model medicinal species of Rheum ribes L. with Maximum Entropy model in Chahtorsh rangeland of the Yazd province. Journal of Range and Watershed Managment, 71(2), 379-391. doi:10.22059/jrwm.2018.200398.968. [In Persian]
Zarkami, R., Ahmadi, M., & Abedini, A. (2021). Modelling habitat preferences of water hyacinth (Eichhornia crassipes) in some wetlands of Guilan province. Journal of Plant Research (Iranian Journal of Biology), 34(2), 275-286. doi:20.1001.1.23832592.1400.34.2.1.0 [In Persian]