References
Alvisi, S., Mascellani, G., Franchini, M., & Bardossy, A. (2006). Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrology and Earth System Sciences, 10(1), 1-17. doi:10.5194/hess-10-1-2006, 2006.
Anvari, S., Moghaddasi, M., & Bagheri, M.H. (2023). Drought mitigation through a hedging-based model of reservoir-farm systems considering climate and streamflow variations. Theoretical and Applied Climatology, 152, 723–737. doi:10.1007/s00704-023-04402-7
Anvari, S., Rashedi, E., & Lotfi, S. (2022). A coupled metaheuristic algorithm and artificial intelligence for long-lead stream flow forecasting. International Journal of Optimization in Civil Engineering, 12(1), 91-104. http://ijoce.iust.ac.ir/article-1-506-en.html
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, (2000). Artificial neural networks in hydrology, I: preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0332-hjelmfelt.pdf
Azarpira, F., & Shahabi, S. (2021). Evaluating the capability of hybrid data-driven approaches to forecast monthly streamflow using hydrometric and meteorological variables. Journal of Hydroinformatics, 23(6), 1165-1181. doi:10.2166/hydro.2021.105
Bani Naeimeh, S., Lashkari, H., Ghorbanian, J., & Morshedi, J. (2023). Synoptic analysis of extremely heavy rains and its effect on the peak discharge of Dez river floods (floods of 1993 and 2005). Water and Soil Management and Modeling, 3(3), 37-55 doi:10.22098
/mmws.2022.11216.1107 [In Persian].
Coulibaly, P., Anctil, F., & Bobée, B. (2000). Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230(3-4), 244-257. doi:10.1016/S0022-1694(00)00214-6
Mirzania, E., Malek Ahmadi, H., Yadegar Shahmohammadi, Y., & Ebrahimzadeh, A. (2021). Impact of wavelet on accuracy of estimated models in rainfall-runoff modeling (Case study: Sufichay). Water and Soil Management and Modeling, 1(3), 67-79 doi:10.22098/mmws.2021.9335.1035. [In Persian]
Moghaddasi, M., Anvari, S., & Akhondi, N. (2022). A trade-off analysis of adaptive and non-adaptive future optimized rule curves based on simulation algorithm and hedging rules. Theoretical and Applied Climatology, 148(1-2), 65-78. doi:10.1007/s00704-022-03930-y
Momeneh, S. (2022). Performance comparison of Artificial Intelligence models with IHACRES model in daily streamflow modeling. Water and Soil Management and Modeling, 2(3), 1-16 doi:10.22098/mmws.2022.9972.1076 [in Persian].
MahdiNasab, M., Negaresh, H., & Tavousi, T. (2015). Modeling of rainfall-runoff Kashkan River catchment based on statistical models. Geography and Environmental Planning: 26(2), 67-84 dor:20.1001.1.20085362.1394.26.2.5.6 [In Persian].
Poormohammadi S., & Javadianzadeh, M.M. (2018). Comparing the efficiency of artificial intelligence methods and the HEC-HMS conceptual model in estimating the increase in resources due to cloud fertilization. The 7th National Conference on Water Resources Management of Iran, Yazd, Iran, Pp1-10. [In Persian].
Rezai Haruni, A., Zare Bidaki, R., & Pourmohammadi, S., (2021) Predicting the effect of cloud seeding on runoff in Beheshtabad watershed using IHACRES model. Journal of Range and Watershed Management, 74(4), 905-916 doi:10.22059/
jrwm.2022.295490.1450 [In Persian].
Saghafian, B., Anvari, S., & Morid, S. (2013). Effect of southern oscillation index and spatially distributed climate data on improving the accuracy of artificial neural network, adaptive neuro-fuzzy in ference system and K-Nearest Neighbour streamflow forecasting models. Expert System 30(4), 367-380. doi:10.1111/exsy.12009
Sajikumar, N., & Thandaveswara, B.S. (1999). A non-linear rainfall–runoff model using an artificial neural network.
Journal of Hydrology,
216(1-2), 32-55.
doi:10.1016/
S0022-1694(98)00273-X
Xiang, Z., Yan, J., & Demir, I. (2020). A Rainfall-runoff model with LSTM-Based sequence-to-sequence learning. Water Resources Research, 56(1), doi:10.1029/2019WR025326.
Zoratipour, A., Salajegheh, A., & Al-Maali, N., &
Asgari, M.H. (2009). Investigation of rainfall-runoff model using artificial neural network and statistical bivariate regression methods (case study in Minab watershed).
Watershed Management Research (Pajouhesh-Va-Sazandegi), 22(2), 69-74 doi:10.3390/ECWS-7-14232 [In Persian].