The effect of landfill leachate irrigation on different soil characteristics and plant nutrition: a review

Document Type : Review Article

Author

Former M.Sc. Student, Department of Soil Science and Engineering, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Introduction
Landfill leachate, a liquid resulting from waste decomposition, contains nutrients like ammoniacal-N, Na, K, and organic matter. Biological treatments effectively remove degradable organics from young landfill leachate, but aged leachate with recalcitrant organics requires combined physical-chemical and biological methods or advanced technologies, leading to higher treatment costs. Even after treatment, leachate may not meet environmental standards for release. In arid and semi-arid regions with water scarcity and low soil organic matter, leachate application to soil presents a potential solution. Soil’s properties enable it to retain and degrade pollutants while utilizing leachate’s nutrients to enhance fertility and crop growth. However, leachate composition and application rates are critical factors due to potential negative impacts from total nitrogen, salinity, and heavy metals. Alkaline pH in aged leachate reduces heavy metal contamination risk. Detailed leachate characterization before soil application is crucial to prevent environmental and functional problems. This review examines existing research on leachate irrigation’s effects on soil properties and plant nutrition, contributing to sustainable leachate management and agricultural practices in water-limited regions. Additionally, the review explores potential risks associated with leachate irrigation, including soil salinization, heavy metal accumulation, and groundwater contamination. By understanding both the benefits and drawbacks, informed decisions can be made regarding the suitability and implementation of leachate irrigation in specific contexts.
 
Materials and Methods
To carry out this study, keywords such as "Landfill leachate", "Composition of landfill leachate" and "Landfill leachate irrigation" were searched in the Web of Science, Google Scholar, ScienceDirect, and SID databases. For these keywords, 205 articles were found from 1989 to 2023. After the screening, quality review, and removal of repetitive and unrelated articles, 110 relevant articles were used. The main criterion for selecting articles was the effects of landfill leachate irrigation on the various properties of soil, and the nutrition of different plant species. The quality of the articles was evaluated through the Scimago Journal Rank (SJR) index, the citation, the Impact Factor, and the source normalized impact per paper (SNIP) index.
 
Results and Discussion
Landfill leachate presents a complex environmental challenge due to its potential for both soil contamination and enrichment. Leachate's xenobiotic and heavy metal components can induce soil contamination, altering the natural environment. Studies have documented reduced hydraulic conductivity, increased gas production, and altered microbial communities, ultimately impacting soil productivity.  Leachate percolation can also modify physicochemical characteristics, including reduced microbial biomass, phosphorus-fixing capacity, and pH shifts, depending on waste composition. Conversely, research highlights the potential benefits of leachate application in arid and semi-arid regions facing water scarcity and low soil organic matter. Leachate can contribute to the increased organic content, improved soil structure, and regulated pH, enhancing soil fertility and crop productivity.  The presence of macro and micro-nutrients such as Fe, Mn, N, P, and Zn further supports leachate's potential as a fertilizer. However, concerns remain regarding inhibitory chemicals in leachate and their potential detrimental effects on plant growth and yield. Studies report instances of leaf injury, reduced yield, and poor survival rates in certain plant species.  In contrast, research demonstrates the positive effects of diluted or low-strength leachate application, stimulating plant growth and enhancing yield, particularly for Brassica species and tree species like Acacia confusa, Leucaena leptocephali, and Eucalyptus tortellini. These contradictory findings underscore the intricate interplay of factors influencing leachate irrigation outcomes. Soil characteristics, plant species, leachate source and composition, application methods, and their interactions all play significant roles in determining the success or failure of leachate irrigation.
Conclusion
Landfill leachate, characterized by its elevated nitrogen and nutrient levels, presents a potential alternative water and fertilizer source for agricultural practices, particularly in arid and semi-arid regions facing water scarcity. However, responsible leachate utilization necessitates a comprehensive approach that balances maximizing benefits with minimizing environmental risks. Prior to agricultural application, detailed leachate characterization is crucial to determine its precise composition and suitability for irrigation. This includes quantifying heavy metal concentrations, salinity levels, and the presence of potentially toxic organic compounds.  Concurrent plant selection is equally important, prioritizing species with demonstrated tolerance to leachate constituents. Given the potential for salinity and heavy metal accumulation, continuous application of raw leachate, especially for sensitive crops, should be avoided. Implementing alternating irrigation regimes with conventional water sources can mitigate these risks while providing essential nutrients for plant growth.  Monitoring soil health indicators, including pH, organic matter content, and microbial activity, is vital to assess long-term impacts and implement necessary soil amendments. Determining optimal leachate application rates requires a multifaceted approach that considers plant-specific nitrogen requirements, leachate toxicity levels, and soil infiltration capacity.  This ensures adequate nutrient supply without exceeding the assimilative capacity of plants and soil, preventing environmental contamination. Further research is needed to investigate the long-term impacts of leachate irrigation on soil health, crop quality, and potential groundwater contamination. Developing standardized guidelines for leachate treatment and application, tailored to specific regional contexts and crop types, is crucial for promoting sustainable and responsible leachate utilization in agriculture.

Keywords

Main Subjects


References
Abdollahi Mansurkhani, S., Asadilour, M., Farzadian, A., Egdernezhad, A., & Asareh, A. (2022). Phytoremediation of heavy metals by vetiver plant species in unconventional water. Environment and Water Engineering, 8(4), 796-809. doi:10.22034/jewe.2022.311963.1653. [In Persian]
Abdulmalek, M.M. (2014). Influence of landfill leachate on growth response and mineral content of Swiss Chard. M.Sc. Thesis, Cape Peninsula University of Technology, Cape Town, South Africa.
Aderemi, A.O., Oriaku, A.V., Adewumi, G.A., & Otitoloju, A.A. (2011). Assessment of groundwater contamination by leachate near a municipal solid waste landfill. African Journal of Environmental Science and Technology, 5(11), 933-940. doi:10.5897/AJEST11.272
Adhikari, B., Dahal, K.R., & Khanal, S.N. (2014). A review of factors affecting the composition of municipal solid waste landfill leachate. International Journal of Engineering Science and Innovative Technology, 3(5), 273-281.
Ahmad, H.R., Sabir, M., Ur Rehman, M.Z., Aziz, T., Maqsood, M.A., Ayub, M.A., & Shahzad, A. (2020). Wastewater irrigation-sourced plant nutrition: Concerns and prospects. Pp. 417-434. In: Aftab T Hakeem KR (eds), Plant Micronutrients, Springer. doi.:10.1007/978-3-030-49856-6_18
Alaribe, F.O., & Agamuthu, P. (2015). Fertigation of Brassica rapa L. using treated landfill leachate as a nutrient recycling option. South African Journal of Science, 122(3/4), 1-8. doi:10.17159/sajs.2016/20150051
Alvarez-Bernal, D., Contreras-Ramos, S.M., Trujillo-Tapia, N., Olalde-Portugal, V., Frías-Hernández, J.T., & Dendooven, L. (2006). Effects of tanneries wastewater on chemical and biological soil characteristics. Applied Soil Ecology, 33(3), 269–277. doi:10.1016/j.apsoi l.2005.10.007
Andreottola, G., & Cannas, P. (1992). Chemical and biological characteristics of landfill leachate. Pp. 65-88. In: Christensen TH Cossu R & Stegmann R (eds), Landfilling of Waste: Leachate, Elsevier-London.
Arasan, S., Yilmaz, G., Akbulut, R.K., & Yetimoglu, T. (2007). Engineering properties of compacted clay liners contaminated by salt solution .Geotechnical Symposium, Adana, Turkey, Pp. 415-425.
Aronsson, P., Dahlin, T., & Dimitriou, I. (2010). Treatment of landfill leachate by irrigation of willow coppice – Plant response and treatment efficiency. Environmental Pollution, 158(3), 795–804. doi:10.1016/j.envpol.2009.10.003
Aryabod, S., Fotovat, A., Lakzian, A., & Haghnia, G.H. (2008). Effect of municipal waste compost leachate on micronutrients uptake by maize and lettuce in sterile and non-sterile conditions. Iranian Journal of Soil Research, 22(1), 47-57. doi:10.22092/IJSR.2008.126982. [In Persian]
Asadi, F., Shariatmadari, N., Moayedi, H., & Huat, B.B.K. (2011). Effect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particles. International Journal of Electrochemical Science, 6(7), 2344-2351.
Astaraei, A., & Aryabod, S. (2008). Effect of municipal solid waste leachate on plant growth and micro elements’ uptake of Green Chilli. Environmental Sciences, 5(3), 95-106. [In Persian]
Bhagwat, R.V., Boralkar, D.B., & Chavhan, R.D. (2018). Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate. Journal of Ecology and Environment, 42(23), 1-8. doi:10.1186/s41610-018-0085-0
Bialowiec, A., & Randerson, P.F. (2010). Phytotoxicity of landfill leachate on willow – Salix amygdalina L. Waste Management, 30(8/9), 1587–1593. doi:10.1016/j.wasman.2010.02.033
Bowman, M.S., Clune, T.S., & Sutton, B.G. (2002). Sustainable management of landfill leachate by irrigation. Water, Air, & Soil Pollution, 134(1/4), 81-96. doi:10.1023/A:1014114500269
Brennan, R.B., Healy, M.G., Morrison, L., Hynes, S., Norton, D., & Clifford, E. (2016). Management of landfill leachate: The legacy of European Union Directives. Waste Management, 55, 355-363. doi:10.1016/j.wasman.2015.10.010
Breza-Boruta, B., Lemanowicz, J., & Bartkowiak, A. (2016). Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environmental Earth Sciences, 75(3), 1-13. doi:10.1007/s12665-015-4955-9
Carlos, F.S., Dos Santos, B.L., Andreazza, R., Tedesco, M.J., Morris, L., & Camargo, F.A.D.O. (2017). Irrigation of paddy soil with industrial landfill leachate: Impacts in Rice productivity, plant nutrition, and chemical characteristics of soil. Paddy and Water Environment, 15(1), 133-144. doi:10.1007/
s10333-016-0535-1
Chan, Y.S.G., Wong, M.H., & Whitton, B.A. (1999). Effects of landfill leachate on growth and nitrogen fixation of two leguminous trees (Acacia confusa, Leucaena leucocephala). Water, Air, and Soil Pollution, 111, 29–40. doi:10.1023/A:1005088919668
Cheng, C.Y. (2004). Landfill Leachate as a Source of Plant Nutrients. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
Cheng, C.Y., & Chu, L.M. (2007). Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation. Environmental Pollution, 145(1), 195-202. doi:10.1016/j.envpol.2006.03.020
Cheng, C.Y., & Chu, L.M. (2011). Fate and distribution of nitrogen in soil and plants irrigated with landfill leachate. Waste Management, 31(6), 1239-1249. doi:10.1016/
j.wasman.2011.01.028
Cheng, C.Y., Tsang, C.K., Wong, R.S.K., & Chu, L.M. (2011). Is landfill leachate a potential source of nitrogen for plant growth? Proceedings of the 12th International Conference on Environment and Industrial Innovation., Singapore, Pp. 286-295.
Cretescu, I., Pohontu, C., Iticescu, C., Cioroi, M., Ciocinta, R.C., & Bucur, D. (2013). Treatment of landfill leachate using Zea mays and Triticum sp. on antropogenic soils. Journal of Food, Agriculture & Environment, 11(3/4), 1507-1512. doi:10.1234/4.2013.4886
Cureton, P.M., Groenevelt, P.H., & McBride, R.A. (1991). Landfill leachate recirculation: Effects on vegetation vigor and clay surface cover infiltration. Journal of Environmental Quality, 20(1),17-24. doi:10.2134/jeq1991.00472425002000010005x
Dimitriou, I., & Aronsson, P. (2010). Landfill leachate treatment with willows and poplars – Efficiency and plant response. Waste Management, 30(11), 2137–2145. doi:10.1016/j.wasman.2010.06.013
Dimitriou, I., Aronsson, P., & Weih, M. (2006). Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresource Technology, 97(1), 150–157. doi:10.1016/j.biortech.2005.02.004
Edmundson, S.J., & Wilkie, A.C. (2013). Landfill leachate – a water and nutrient resource for algae-based biofuels. Environmental Technology, 34(13/14), 1849–1857. doi:10.1080/09593330.2013.826256
Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022a). The effect of different moisture levels on the enrichment of cow manure compost with iron and zinc metal scraps. Environmental Sciences Studies, 8(3), 6892-6902. doi:10.22034/JESS.2023.378611. [In Persian]
Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022b). Enrichment of cow manure compost with iron and zinc metal scraps in different moisture levels. Proceedings of the 7th International Congress on Development of Agricultural and Environment with emphasis on the UN Development Program, Tehran, Iran, Pp. 1-8. [In Persian]
Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022c). Available iron and zinc concentration of soils with different textures under the influence of cow manure compost application enriched with iron and zinc metal scraps. Proceedings of the 7th International Congress on Development of Agricultural and Environment with emphasis on the UN Development Program, Tehran, Iran, Pp. 1-9. [In Persian]
Fasani, E., DalCorso, G., Zerminiani, A., Ferrarese, A., Campostrini, P., & Furini, A. (2019). Phytoremediatory efficiency of Chrysopogon zizanioides in the treatment of landfill leachate: a case study. Environmental Science and Pollution Research, 26(10), 10057-10069. doi:10.1007/s11356-019-04505-7
Filho, J.A., Dias, N.D.S., Batista, R.O., Santos Júnior, J.A., Santos, A.G.D., & Lima, A.L.F. (2018). Landfill leachate as nutritional source in castor bean cultivation under semi-arid conditions. Brazilian Journal of Agricultural and Environmental Engineering, 22(6), 378-382. doi:10.1590/1807-1929/agriambi.v22n6p378-382
Franco, H.A., Filho, S.T., Pérez, D.V., & da Costa Marques, M.R. (2020). Impact of the application of landfill leachate on the germination of Senna macranthera in different substrates. Journal of Social, Technological and Environmental Science, 9(2), 68-87. doi:10.21664/2238-8869.2020v9i2
Friedman, S.P. (2005). Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 46(1), 45-70. doi:10.1016/j.compag.2004.11.001
Fu, L.H. (2004). The use of landfill leachate for growing ornamental plants. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
Ghaemi, A.A., & Majdeddin, F. (2016). Investigation of the phytoremediation of vetiver and eucalyptus by absorption of heavy metals from sewage in a contaminated soil with landfill leachate. Water Resources Engineering, 9(1), 95-106. dor:20.1001.1.20086377.1395.9.28.8.9. [In Persian]
Gordon, A.M., McBride, R.A., Fisken, A.J., & Bates, T.E. (1989). Effect of landfill leachate irrigation on red maple (Acer rubrum L.) and sugar maple (Acer saccharum) seedling growth and on foliar nutrient concentrations. Environmental Pollution, 56(4), 327-336. doi:10.1016/0269-7491(89)90078-X
Guerrero-Rodríguez, D., Sánchez-Yáñez, J.M., Buenrostro-Delgado, O., & Márquez-Benavides, L. (2014). Phytotoxic effect of landfill leachate with different pollution indexes on Common bean. Water, Air, & Soil Pollution, 225(6), 1-7. doi:10.1007/s11270-014-2002-1
Guidi Nissim, W., Palm, E., Pandolfi, C., Mancuso, S., & Azzarello, E. (2021). Willow and Poplar for the phyto-treatment of landfill leachate in Mediterranean climate. Journal of Environmental Management, 277(1), 111454. doi:10.1016/j.jenvman.2020.111454
Han, K., Zhou, C.J., & Wang, L.Q. (2014). Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system. Journal of Integrative Agriculture, 13(5), 1099-1112. doi:10.1016/S2095-3119(13)60493-1
Hasnelly, H., Yasin, S., Agustian, A., Darmawan. (2021). Response of growth and yield of soybean (Glycine max L.) to the method and dose of leachate liquid organic fertilizer application. Journal of Agro Science, 9(2), 109-115. doi:10.18196/pt.v9i2.9000
Im, J.H., Woo, H.J., Choi, M.W., Han, K.B., & Kim, C.W. (2001). Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Research, 35(10), 2403-2410. doi:10.1016/S0043-1354(00)00519-4
Islam, J., & Singhal, N. (2004). A laboratory study of landfill leachate transport in soils. Water Research, 38(8), 2035–2042. doi:10.1016/j.watres.2004.01.024
Jalalipour, H., & Ghaemi, A.A. (2013). A study of the ability of vetiver grass to refinement city landfill residuals. Iranian Water Research Journal, 7(12), 45-52. [In Persian]
Jorge, L.G.T., Peralta-Videab, J.R., de la Rosa, G., & Parsons, J.G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 249(17-18), 1797-1810.       doi:10.1016/j.ccr.2005.01.001
Kabata-Pendias, A. (2010). Trace elements in soils and plants. 4th Edition: CRC Press, Boca Raton, FL. 548 pages. doi:10.1201/b10158
Kalbasi, M., & Gandomkar, A. (1997). Effect of garbage leachate on yield and chemical composition of corn and the effect of leachate residual on soil characteristics. Journal of Water and Soil Science, 1(2), 41-51. dor:20.1001.1.22518517.1376.1.2.4.3. [In Persian]
Kang, D.H., Tsao, D., Wang-Cahill, F., Rock, S., Schwab, A.P., & Banks, M.K. (2008). Assessment of landfill leachate volume and concentrations of cyanide and fluoride during phytoremediation. Bioremediation Journal, 12(1), 35–48. doi:10.1080/10889860701866297
Khoshgoftarmanesh, A.H., & Kalbasi, M. (2001). Effect of garbage leachate on soil properties, growth and yield of rice. Journal of Water and Soil Science, 15(1), 12-24. [In Persian]
Khoshgoftarmanesh, A.H., & Kalbasi, M. (2002). Effects of residual processed municipal waste leachate on soil properties, and wheat growth and yield. Journal of Water and Soil Science, 6(3), 141-149. dor:20.1001.1.24763594.1381.6.3.11.2. [In Persian]
Kjeldsen, P., & Christophersen, M., (2001). Composition of leachate from old landfills in Denmark. Waste Management & Research, 19(3), 249-256. doi:10.1177/0734242X0101900306
Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A.P., Ledin, A., & Christensen, T.H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336. doi:10.1080/10643380290813462
Klauck, C.R., Giacobbo, A., Altenhofen, C.G., Silva, L.B., Meneguzzi, A., Bernardes, A.M., & Rodrigues, M.A.S. (2017). Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environmental Technology & Innovation, 8, 246-255. doi:10.1016/j.eti.2017.07.006
Krishna, K., Chaitra, R., & Kumari, J. (2016). Effects of municipal solid waste leachate on the quality of soil. International Journal of Engineering Science Invention, 5(6), 69-73.
Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981–5985. doi:10.1016/j.biortech.2007.10.015
Kuwano, B.H., Nogueira, M.A., Santos, C.A., Fagotti, D.S.L., Santos, M.B., Lescano, L.E.A.M., Andrade, D.S., Barbosa, G.M.C., & Tavares-Filho, J. (2017). Application of landfill leachate improves wheat nutrition and yield but has minor effects on soil properties. Journal of Environmental Quality, 46(1), 153–159. doi:10.2134/jeq2016.02.0041
Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73(1), 17-42. doi:10.1146/annurev-arplant-102720-125738
Landon, J.R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. 1st Edition: Longman Scientific & Technical, Harlow. 530 pages. doi:10.4324/9781315846842
Lanrewaju, O.A., Longinus, N.K., Olamilekan, M.Q., Alex, A.A., Olalekan, O.O., & Olanrewaju, B. (2019). Heavy metal residue and potential human health risk factors of Celosia argentea (Lagos spinach) planted in a soil mixed with landfill leachate. Environment Asia, 12(1), 74-82. doi:10.14456/ea.2019.9
Leal, R.M.P., Firme, L.P., Herpin, U., Fonseca, A.F., Montes, C.R., Dias, C.T.S., & Melfi, A.J. (2010). Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater. Agricultural Water Management, 97(2), 271–276. doi:10.1016/j.agwat.2009.09.018
Lee, A.H., Nikraz, H., & Hung, Y.T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1(4), 347-350. doi:10.7763/IJESD.2010.V1.68
Li, X.Z., & Zhao, Q.L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20(2), 171-181. doi:10.1016/S0925-8574(03)00012-0
Liang, J., Zhang, J., & Wong, M.H. (1999). Landfill leachate used as irrigation water on landfill sites during dry seasons. Pp 305-317. In: Wong MH, Wong JWC and Baker AJM, editors. Remediation and Management of Degraded Lands, Lewis Publishers, Boca Raton.
Lindsay, W. (1995). Chemical reactions in soils that affect iron availability to plants. A quantative approach. Pp. 7-14. In: Abadía J (eds), Iron Nutrition in Soils and Plants, Springer-Dordrecht. doi:10.1007/978-94-011-0503-3_2
Loncnar, M., Zupancic, M., Bukovek, P., & Justin, M.Z. (2010). Fate of saline ions in a planted landfill site with leachate recirculation. Waste Management, 30(1), 110–118. doi:10.1016/j.wasman.2009.09.010
Luna, Y., Otal, E., Vilches, L.F., Vale, J., Querol, X., & Fernandez Pereira, C. (2007). Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study. Waste Management, 27(12), 1877–1883. doi:10.1016/j.wasman.2006.10.016
Lund, U., Rasmussen, L., Segato, H., & Ostfeldt, P. (1992). Analytical methods for leachate characterization. Pp. 167-181. In: Christensen TH Cossu R & Stegmann R (eds), Landfilling of Waste: Leachate, Elsevier-London.
MacDonald, N.W., Rediske, R.R., Scull, B.T., & Wierzbicki, D. (2008). Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications. Journal of Environmental Quality, 37(5), 1974-1985. doi:10.2134/jeq2007.0637
Madera-Parra, C.A., Peña, M.R., Peña, E.J., & Lens, P.N.L. (2014). Cr (VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environmental Science and Pollution Research, 22(17), 12804-12815. doi:10.1007/s11356-014-3623-z
Mathan, K.K. (1994). Studies on the influence of long-term municipal sewageeffluent irrigation on soil physical properties. Bioresource Technology, 48(3), 275–276. doi:10.1016/0960-8524(94)90159-7
McFarlane, D.J., George, R.J., Barrett-Lennard, E.G., & Gilfedder, M. (2016). Salinity in dryland agricultural systems: Challenges and opportunities. Pp. 521-547. In: Farooq M & Siddique KHM (eds), Innovations in Dryland Agriculture, Springer. doi:10.1007/978-3-319-47928-6_19
Mekki, A., Dhouib, A., & Sayadi, S. (2009). Evolution of several soil properties following amendment with olive mill wastewater. Progress in Natural Science, 19(11), 1515–1521. doi:10.1016/j.pnsc.2009.04.014
Mendel, P., Vyhnánek, T., Braidot, E., Filippi, A., Trojan, V., Bjelková, M., Vaverková, M.D., Adamcová, D., Zloch, J., Brtnický, M., & Đorđević, B. (2020). Fiber quality of Hemp (Cannabis sativa L.) grown in soil irrigated by landfill leachate water. Journal of Natural Fibers, 19(9), 3288-3299. doi:10.1080/15440478.2020.1843101
Mir Seyed Hosseini, H., Karimi, R., Bagheri Novair, S., & Tabatabaei, S.H. (2016). A study of treated municipal waste leachate and Zeolite effects on soils. Iran Agricultural Research, 34(2), 109-116. doi:10.22099/IAR.2016.3533
Mirzaei, S.M.J., Tabatabaei, S.H., Heidarpour, M., & Najafi P. (2014). Effect of compost’s leachate on some physical and hydraulic characteristics of soil enriched by zeolite. Journal of Water and Soil Science, 17(66), 37-48. dor:20.1001.1.24763594.1392.17.66.7.1. [In Persian]
Moezzipour, A., Pourtahmasi, K., Motesharezadeh, B., Oladi, R., & Ramazani Saadatabadi A. (2020). Effect of irrigation with municipal landfill leachate on the chemicals content of the tree shoots of Populous (Populus deltoides) and Fraxinus (Fraxinus excelsior). Iranian Journal of Forest, 11(4), 458-475. [In Persian]
Mohamed, A., & Ebead, B. (2013). Effect of magnetic treated irrigation water on salt removal from a sandy soil and the availability of certain nutrients. International Journal of Engineering and Applied Sciences, 2(2), 36-44.
Mor, S., Kaur, K., & Khaiwal, R. (2013). Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. Journal of Environmental Biology, 34(6), 1083-1087.
Moraes Costa, A., Marotta Alfaia, R.G.D.S., & Campos, J.C. (2019). Landfill leachate treatment in Brazil – An overview. Journal of Environmental Management, 232, 110-116. doi:10.1016/j.jenvman.2018.11.006
Mueller, K., Magesan, G.N., & Bolan, N.S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120(2/4), 93–116. doi:10.1016/j.agee.
2006.08.016
Mukherjee, S., Mukhopadhyay, S., Ali Hashim, M., & Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: Assessment & remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472-590. doi:10.1080/10643389.2013.876524
Naveen, B.P., Mahapatra, D.B., Sitharam, T.G., Sivapullaiah, P.V., & Ram achandra, T.V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12. doi:10.1016/j.envpol.2016.09.002
Nayak, S., Sunil, B.M., & Shrihari, S. (2007). Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Engineering Geology, 94(3/4), 137-144. doi:10.1016/j.enggeo.2007.05.002
Neina, D. (2019). The role of soil ph in plant nutrition and soil remediation. Applied and Environmental Soil Science, 1-9. doi:10.1155/2019/5794869
Nunes Júnior, F.H., Gondim, F.A., Pereira, M.D.S., Braga, B.B., Filho, R.A.P., & Barbosa, F.E.L. (2016). Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants. Brazilian Journal of Agricultural and Environmental Engineering, 20(8), 746-750. doi:10.1590/1807-1929
Nyika, J. (2021). Application of experimental and modelling techniques to estimate the effects of landfill leachate on soil and water. Ph.D. Thesis, University of South Africa, Pretoria, South Africa.
Panahpour, E., Gholami, A., & Davami, A.H. (2011). Influence of garbage leachate on soil reaction, salinity and soil organic matter in east of Isfahan. World Academy of Science, Engineering and Technology, 3, 171-176. doi:10.5281/zenodo.1327821
Panchoni, L.C., Santos, C.A., Kuwano, B.H., Carmo, K.B., Cely, M.V.T., Oliveira-Júnior, A.G., Fagotti, D.S.L., Cervantes, V.N.M., Zangaro, W., Andrade, D.S., Andrade, G., & Nogueira, M.A. (2016). Effect of landfill leachate on cereal nutrition and productivity and on soil properties. Journal of Environmental Quality, 45(1), 1-7. doi:10.2134/jeq2015.06.0281
Parida, A.K., & Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010
Postacchini, L., Ciarapica, F.E., & Bevilacqua, M. (2018). Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. Journal of Cleaner Production, 183, 1021-1033. doi:10.1016/j.jclepro.2018.02.219
Ramos-Arcos, S.A., López-Martínez, S., Lagunas Rivera, S., González-Mondragón, E.G., de La Cruz Leyva, M.C., & Velázquez-Martínez, J.R. (2019). Phytoremediation of landfill leachate using vetiver (Chrysopogon zizanioides) and cattail (Typha latifolia). Applied and Environmental Microbiology, 17(2), 2619-2630. doi:10.15666/aeer/1702_26192630
Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008.) Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. doi:10.1016/j.jhazmat.2007.09.077
Revel, J.C., Morard, P., Bailly, J.R., Labbé, H., Berthout, C., & Kaemmerer, M. (1999). Plants' use of leachate derived from municipal solid waste. Journal of Environmental Quality, 28(4), 1083-1089. doi:10.2134/jeq1999.00472425002800040004x
Salehi, N., Azhdarpoor, A., & Shirdarreh, M. (2020). The effect of landfill leachate and pyrene on sorghum bicolor growth parameters and soil bacterial communities. Journal of Health Sciences and Surveillance System, 8(2), 85-92. doi:10.30476/JHSSS.2020.86548.1093
Salem, Z., Hamouri, K., Djemaa, R., & Allia, K. (2008). Evaluation of landfill leachate pollution and treatment. Desalination, 220(1/3), 108-114. doi:10.1016/j.desal.2007.01.026
Smaoui, Y., Chaari, L., Fersi, M., Gargouri, K., & Bouzid, J. (2020). Effects of raw and treated landfill leachate on the chemical properties of a Tunisian soil. Euro-Mediterranean Journal for Environmental Integration, 5(3), 1-10. doi:10.1007/s41207-020-00183-x
Santos, C.A., Panchoni, L.C., Bini, D., Kuwano, B.H., Carmo, K.B., Silva, S.M.C.P., Martines, A.M., Andrade, G., Andrade, D.S., Cardoso, E.J.B.N., Zangaro, W., & Nogueira, M.A. (2013). Land application of municipal landfill leachate: Fate of ions and ammonia volatilization. Journal of Environmental Quality, 42(2), 523–531. doi:10.2134/jeq2012.0170
Şchiopu, A.M., Robu, B.M., Apostol, I., & Gavrilescu, M. (2009). Impact of landfill leachate on soil quality in IASI county. Environmental Engineering and Management Journal, 8(5), 1155-1164. doi:10.30638/eemj.2009.169
Shrive, S.C., & McBride, R.A. (1995). Physiological responses of red maple saplings to sub-irrigation with and untreated municipal landfill leachate. Waste Management & Research, 13(3), 219-239. doi:10.1016/S0734-242X(95)90041-1
Singh, R.P., Singh, P., Araujo, A.S.F., Ibrahim, M.H., & Sulaiman, O. (2011). Management of urban solid waste: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 55(7), 719-729. doi:10.1016/j.resconrec.2011.02.005
Singh, S., Raju, N.J., & Ramakrishna, C.H. (2017). Assessment of the effect of landfill leachate irrigation of different doses on wheat plant growth and harvest index: A laboratory simulation study. Environmental Nanotechnology, Monitoring and Management, 8, 150-156. doi:10.1016/j.enmm.2017.07.005
Singh, S., Raju, N.J., & Ramakrishna, C.H. (2015) Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. Journal of Water Resource and Protection, 7(7), 482-497. doi:10.4236/jwarp.2015.77046
Singh, D., Tembhare, M., Machhirake, N., & Kumar, S. (2023). Impact of municipal solid waste landfill leachate on biogas production rate. Journal of Environmental Management, 336, 1-17. doi:10.1016/j.jenvman.2023.117643
Singhal, N., & Islam, J. (2008). One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation. Journal of Contaminant Hydrology, 96(1/4), 32-47. doi:10.1016/j.jconhyd.2007.09.007
Stephens, W., Tyrrel, S.F., & Tiberghien, J.E. (2000). Irrigation short rotation coppice with landfill leachate: constraints to productivity due to chloride. Bioresource Technology, 75(3), 227-229. doi:10.1016/S09608524(00)00065-1
Taylor, J.P., Wilson, B., Mills, M.S., & Burns, R.G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology & Biochemistry, 34(3), 387–401. doi:10.1016/S0038-0717(01)00199-7
Tewolde, H., Sistani, K.R., & Rowe, D.E. (2005). Broiler litter as a sole nutrient source for cotton: Nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in plant parts. Journal of Plant Nutrition, 28(4), 605–619. doi:10.1081/PLN-200052633
Torabi Farsani, B., & Afyuni, M. (2021). Effect of urban waste compost leachate on the soil physical, hydraulic, moisture characteristics and corn yield. Journal of Water and Soil Science, 25(1), 1-14. doi:20.1001.1.24763594.1400.25.1.1.1. [In Persian]
Toufexi, E., Tsarpali, v., Efthimiou, i., Vidali, M.S., Vlastos, d., & Dailianis, S. (2013). Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. Journal of Hazardous Materials, 260, 593–601. doi:10.1016/j.jhazmat.2013.05.054
Tsang, C.K. (2006). Landfill leachate irrigation: Evaluation of plant productivity and soil toxicity. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
Turki, N., & Bouzid, J. (2017). Effects of landfill leachate application on crops growth and properties of a mediterranean sandy soil. Journal of Pollution Effects & Control, 5(2), 186. doi:10.4176/2375-4397.1000186
Wong, M.H., & Leung, C.K. (1989). Landfill leachate as irrigation water for tree and vegetable crops. Waste Management & Research, 7(4), 311–323. doi:10.1016/0734242X(89)90069-4
Wong, R.S.K. (2003). Chemical and Ecotoxicological Characterization of Landfill Leachate, M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
WHO. (1996). Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva, Switzerland.
Wydro, U., Wołejko, E., Sokołowska, G., Leszczynski, J., & Jabłonska-Trypuc, A. (2022). Investigating landfill leachate influence on soil microbial biodiversity and its cytotoxicity. Water, 14(22), 3634. doi:10.3390/w14223634
Xing, Y., Jiang, W., He, X., Fiaz, S., Ahmad, S., Lei, X., Wang, W., Wang, Y., & Wang, Y. (2019). A review of nitrogen translocation and nitrogen-use efficiency. Journal of Plant Nutrition, 42(19), 2624-2641. doi:10.1080/01904167.2019.1656247
Xu, Q., Renault, S., & Yuan, Q. (2019). Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. International Journal of Phytoremediation, 21(9), 831-839. doi:10.1080/15226514.2019.1568383
Yalcuk, I., & Ugurlu, A. (2020). Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: Plant growth modeling. International Journal of Phytoremediation, 22(2), 157–166. doi:10.1080/15226514.2019.1652562
Zalesny, J.A., Zalesny Jr, R.S., Wiese, A.H., Sexton, B.T., & Hall, R.B. (2008a). Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of populus after irrigation with landfill leachate. Journal of Sustainable Forestry, 27(3), 303-327. doi:10.1080/10549810802256262
Zalesny, J.A., Zalesny Jr, R.S., Wiese, A.H., Sexton, B.T., & Hall, R.B. (2008b). Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environmental Pollution, 155(1), 72-80. doi:10.1016/j.envpol.2007.10.032
Zhang, H.H., He, P.J., & Shao, L.M. (2010). Ammonia volatilization, N2O and CO2 emissions from landfill leachate-irrigated soils. Waste Management, 30(1), 119-124. doi:10.1016/j.wasman.2009.08.004
Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., & He, R. (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Management, 33(11), 2277–2286. doi:10.1016/j.wasman.2013.07.021
Zupanc, V., & Zupancic Justin, M. (2010). Changes in soil characteristics during landfill leachate irrigation of Populus deltoids. Waste Management, 30(11), 2130–2136. doi:10.1016/j.wasman.2010.05.004