References
Abdi, M., Nohtani, M., Dehghani, M., & Khaksefidi, A. (2023). Determining the changes in flood potential caused by drought periods in the Dehak watershed of south Khorasan province.
Water and Soil Management and Modeling.
3(1), 149-164.
doi:10.22098/MMWS.2022.11296.1118. [In Persian]
Ahlmer, A.K., Cavalli, M., Hansson, K., Koutsouris, A.J., Crema, S., & Kalantari, Z. (2018). Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environmental Earth Sciences, 77, 1-17. doi:10.1007/s12665-018-7704-z
Al-Areeq, A.M., Abba, S.I., Yassin, M.A., Benaafi, M., Ghaleb, M., & Aljundi, I.H. (2022). Computational machine learning approach for flood susceptibility assessment integrated with remote sensing and GIS techniques from Jeddah, Saudi Arabia.
Remote Sensing,
14(21), 5515.
doi:10.3390/rs14215515
Avand, M., Janizadeh, S., Bui, D.T., Pham, V.H., Ngo, T.T., & Nhu, V. (2020a). A tree-based intelligence ensemble approach for spatial prediction of potential groundwater.
International Journal Digital Earth, 13(12), 1–22.
doi:10.1080/17538947.2020.1718785
Chakrabortty, R., Chandra Pal, S., Rezaie, F., Arabameri, A., Lee, S., Roy, P., Saha, A., Chowdhuri, I., & Moayedi, H. (2022). Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India.
Geocarto International,
37(23), 6713-6735.
doi:10.1080/10106049.2021.1953618
Congalton, R.G. & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practices. CRC Press. 364 p.
doi:10.1201/9780429052729
Dodangeh, E., Choubin, B., Eigdir, A.N., Nabipour, N., Panahi, M., Shamshirband, S., & Mosavi, A. (2020). Integrated machine learning methods with resampling algorithms for flood susceptibility prediction.
Science of the Total Environment,
705, 135983.
doi:10.1016/j.scitotenv.2019.135983
Elish, M.O. (2009). Improved estimation of software project effort using multiple additive regression trees.
Expert Systems with Applications,
36(7), 10774-10778.
doi:10.1016/j.eswa.2009.02.013
Faramarzi, H., Hosseini, S.M., Pourghasemi, H.R., & Farneghi, M. (2020). Flood reduction in urban basins using LID-BMPs in SWMM model and selecting the best option with AHP-TOPSIS (Case study: Golestan area in Semnan).
Ecohydrology.
6(4), 1003-1013.
doi:10.22059/IJE.2019.285430.1163. [In Persian]
Friedman, J.H., & Meulman, J.J. (2003). Multiple additive regression trees with application in epidemiology.
Statistics in Medicine,
22(9), 1365-1381.
doi:10.1002/sim.1501
Ha, M.C., Vu, P.L., Nguyen, H.D., Hoang, T.P., Dang, D.D., Dinh, T.B.H., Serban, G., Rus, I., & Brețcan, P. (2022). Machine learning and remote sensing application for extreme climate evaluation: Example of flood susceptibility in the Hue Province, Central Vietnam region.
Water,
14(10), 1617.
doi:10.3390/w14101617
Hong, J., Tamakloe, R., & Park, D. (2020). Application of association rules mining algorithm for hazardous materials transportation crashes on expressway.
Accident Analysis & Prevention,
142, 105497.
doi:10.1016/j.aap.2020.105497
Ighile, E.H., Shirakawa, H., & Tanikawa, H. (2022). Application of GIS and machine learning to predict flood areas in Nigeria.
Sustainability,
14(9), 5039.
doi:10.3390/su14095039
Iqbal, U., Riaz, M.Z.B., Zhao, J., Barthelemy, J., & Perez, P. (2023). Drones for flood monitoring, mapping and detection: a bibliometric review.
Drones,
7(1), 32.
doi:10.3390/drones7010032
Kavianpour, A.H., Jafarian, Z., Ismali, A., & Kavian, A.A. (2014). Effect of vegetation covers on decreasing runoff and soil loss using rainfall simultion in Nesho rangeland, Mazandaran province.
Geography and Environmental Planning,
26(2), 179-190. dor:
20.1001.1.20085362.1394.26.2.12.3. [In Persian]
Khaldi, L., Elabed, A., & El Khanchoufi, A. (2023). Quantitative assessment of the relative impacts of different factors on flood susceptibility modelling: case study of Fez-Meknes region in Morocco. E3S Web of Conferences, 364(4), 02005.
doi:10.1051/e3sconf/202336402005
Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H.R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987. doi:10.1007/s11069-016-2357-2
Kia, M.B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., Moradi, A., Nor, W., Sulaiman, A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67, 251-264. doi:10.1007/s12665-011-1504-z
Mo, K.C., & Chelliah, M. (2006). The modified Palmer drought severity index based on the NCEP North American Regional Reanalysis.
Journal of Applied Meteorology and Climatology,
45(10), 1362-1375.
doi:10.1175/JAM2402.1
Monteiro, D.S., & Antonio, J.F. (2002). Multiple additive regression trees a methodology for predictive data mining for fraud detection. Naval Postgraduate School Monterey Ca.93PP
Mosavi, A., Ozturk, P., & Chau, K.W. (2018). Flood prediction using machine learning models: Literature review.
Water,
10(11), 1536.
doi:10.3390/w10111536
Pierdicca, N., Pulvirenti, L., Chini, M., Guerriero, L., & Ferrazzoli, P. (2010). A fuzzy-logic-based approach for flood detection from Cosmo-SkyMed data. In 2010 IEEE International Geoscience and Remote Sensing Symposium, Pp. 4796-4798. doi:
10.1109/IGARSS.2010.5650903
Reis, A.A., Carvalho, M.C., de Mello, J.M., Gomide, L.R., Ferraz Filho, A.C., & Acerbi Junior, F.W. (2018). Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods.
New Zealand Journal of Forestry Science,
48(1), 1-17.
doi:10.1186/s40490-017-0108-0
Saberi Tanasvan, M.,Ganji Noroozi;, Z., Delghandi, M., Dorostkar, V. (2020). Sensitivity analysis of flood parameters to roughness variation.
Journal of Irrigation and Water Engineering, 10(4), 167-180.
doi: 10.22125/IWE.2020.110081. [In Persian]
Sayyad, D., Ghazavi, R., & Omidvar, E., (2022). Appropriate urban infrastructure management strategies against floods from the perspective of passive defense using SWOT and QSPM (Case study: Kashan City).
Water and Soil Management and Modeling,
2(1), 45-52.
doi:10.22098/MMWS.2022.9651.1055. [In Persian].
Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.
Journal of Environmental Management,
217, 1-11.
doi:10.1016/j.jenvman.2018.03.089
Solaimani, K., & Davishi, S. (2020). Zoning and monitoring of spring 2019 flood hazard in Khuzestan using landsat-8 data.
Ecohydrology.
7(3), 647-662.
doi: 10.22059/IJE.2020.302703.1333. [In Persian]
Tajbakhsh Fakhrabadi, S.M., & Chezgi, J. (2022). Prioritization of flooding sub-basins in the north of the Birjand Plain using morphometric factors and VIKOR model.
Water and Soil Management and Modeling, 3(3), 240-255.
doi:10.22098/MMWS.2022.11855.1179. [In Persian]
Wang, Y., Fang, Z., Hong, H., & Peng, L.
(2020). Flood susceptibility mapping using convolutional neural network frameworks.
Journal of. Hydrology, 582, 124–482.
doi:10.1016/j.jhydrol.2019.124482
Were, K., Bui, D.T., Dick, Ø.B., & Singh, B.R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape.
Ecological Indicators,
52, 394-403.
doi:10.1016/j.ecolind.2014.12.028
Yousefi, H., Yonesi, H., Davoudimoghadam, D., Arshia, A., & Shamsi, Z. (2022).
Determination of flood potential using CART, GLM and GAM machine learning models.
Journal of Irrigation and Water Engineering. 12(4): 84-105.
doi: 10.22125/IWE.2022.15068. [In Persian]