Uncertainty analysis in the simulation of effective seepage flow through earth dams with the Monte Carlo algorithm and machine learning

Document Type : Research/Original/Regular Article

Authors

1 Associate Professor/ Water Civil Engineering Department, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 Ph.D./ Water Civil Engineering Department, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract

Introduction
The cost of building dams is very high and their failure can be hazardous. On the other hand, they are vital for every country as freshwater storage. Deterministic and traditional algorithms can not answer the multidimensional and complex problems of dam construction, and it is necessary to use hybrid methods based on probabilities. The problems of fluid movement in their nature have a complexity that modeling and finding requires using an advanced algorithm that can finally interpret its non-deterministic nature. Earth dams have a porous, multiphase, and complex medium, and the hydraulic and mechanical variables in different parts are associated with uncertainty. For this reason, in recent years, the regulations for the design of dams have been reforming in the direction of applying non-deterministic and probabilistic variables in the calculations. A probabilistic engineering view leads to a more realistic understanding of design than deterministic approaches. In the research, artificial intelligence (AI) methods have been used to analyze the data, which provides a predictive model of behavior for seepage discharge flow through the earth dam. In general, the present research has two purposes: a) to estimate the effect of uncertainty of the hydraulic conductivity dam on seepage discharge and b) to provide a model to estimate seepage discharge in a dimensionless way with the gene expression programming (GEP) and support vector machine (SVM) methods.
 
Materials and Methods
Monte Carlo simulation (MCS) with 2000 iterations was executed for stochastic analysis. The first step of the Monte Carlo simulation is the choice of the deterministic performance function. In the second step, the input variables were defined to the performance function and the probability distribution for variable/variables. By repeating the process n times, n random answers were extracted for the resulting problem, and finally, probability density function (PDF) and cumulative density function (CDF) graphs were drawn for the results. In the Fortran code of this research and to check the convergence, the hydraulic heads were compared to achieve the difference obtained in iteration n with the obtained value in iteration n-1, and if the difference is less than the tolerance error, then the program stops. In the next section of the algorithm, the obtained data (from the repeated execution of the MCS) are converted into a model for a description relationship between the effective seepage discharge (ESD) and the input variables by using the metaheuristic methods that include; gene expression programming (GEP) and support vector machine (SVM). After GEP and support vector regression (SVR) modeling the predicted and observed results were compared by statistical indexes such as MSE, RMSE, MAE, and Correlation coefficients.
 
Results and Discussion
The different models of earth dams were implemented in the Fortran program, and the average and standard deviation of the seepage discharge flow in the uncertainty state were obtained. To determine the relationship between the ESD value, indicators had been defined that these parameters used for the Gene Expression Programming model include; Kx/Ky, W/B, Bd/B, Bu/B, Hdam/B, Hu/Hdam, and Hd/Hu. These were the factors influencing the seepage discharge of the earth dam, and the discharge component is also defined as the effective seepage discharge (ESD) in a dimensionless manner. Kx and Ky are soil permeability in the direction of the horizontal and vertical axes respectively (m/s), W is the width of the crest, B is the width of the base of the earth dam, Bd is the horizontal distance of the dam tip from the downstream side from the crest, Bu is the horizontal distance of the dam tip from the upstream side crest, Hdam height of the dam, Hu height of the reservoir level, Hd water height downstream of the dam, all the variables are in meters. By increasing the Kx/Ky ratio of horizontal to vertical hydraulic conductivity by 49%, the Effective Seepage Discharge increases by 14%. If the horizontal variable of permeability is increased by 25%, the ESD rate increases by 4.56%, similarly, if the vertical variable is increased by 25%, the ESD decreases by 4.72%.
 
Conclusion
After finite element analysis, and modeling with two methods of gene expression programming (GEP) and support vector regression (SVR), the statistical analysis of the methods showed that the two calculation models had a good prediction of the ESD with a correlation coefficient above 0.9. Vertical hydraulic conductivity (Ky) has a greater effect on the ESD rate than horizontal hydraulic conductivity (Kx). The results of the geometric investigation of the dam also show that the increase in the ratio Hdam/B has a direct impact on the ESD and also the lower the slope downstream of the dam leads to the lower the ESD. The statistical analysis was used to compare the results of the data obtained from Fortran output for SVR and GEP models. In general, the SVR model is closer to the model resulting from the Fortran code rather than the GEP model, and it has a low root mean square error (RMSE) and a high correlation coefficient.

Keywords

Main Subjects


References
Ahmed, S.A., Revil, A., Bolève, A., Steck, B., Vergniault, C., Courivaud, J.R., & Abbas, M. (2020). Determination of the permeability of seepage flow paths in dams from self-potential measurements. Engineering Geology, 268, 105514. doi: 10.1016/j.enggeo.2020.105514
Akhavan Giglou, K., Kheiry, M., Ahmadpari, H., Abbasi, S., & Kalateh, F. (2023). Investigating virtual water content and physical and economic water productivity indicators in crops (Case study: Moghan irrigation network, Ardabil province). Water and Soil Management and Modelling, 3(3), 277-295. doi: 10.22098/mmws.2023.11899.1186. [In Persian]
Bakr, A.A.M. (1976). Stochastic analysis of the effect of spatial variations of hydraulic conductivity on groundwater flow. New Mexico Institute of Mining and Technology.
Beiranvand, B., & Rajaee, T. (2022). Application of artificial intelligence-based single and hybrid models in predicting seepage and pore water pressure of dams: A state-of-the-art review. Advances in Engineering Software, 173, 103268.‏ doi:10.1016/j.advengsoft.2022.
103268
Calamak, M., Kentel, E., & Yanmaz, A.M. (2012). Seepage analysis through earth-fill dams having random fields. In 10th International Congress on Advances in Civil Engineering, Ankara, Turkey, Pp. 97.‏
Cho, S.E. (2012). Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Engineering Geology, 133-134, 30-39. doi:10.1016/j.enggeo.2012.02.013
Choopan, Y., Emami, S., & Kheiri Ghooje Bigloo, M. (2020). Evaluating election, imperialist competitive algorithms and artificial neural network method in investigating the groundwater level of Reshtkhar Plain. Amirkabir Journal of Civil Engineering, 52(6), 1333-1246. doi: 10.22060/ceej.2019.15344.
5888. [In Persian]
Croisard, N., Vasile, M., Kemble, S., & Radice, G. (2010). Preliminary space mission design under uncertainty. Acta Astronautica, 66(5), 654-664. doi: 10.1016/j.actaastro.2009.08.004.
Dagan, G. (1976). Comment on ‘Stochastic conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media’by R. Allan Freeze. Water Resources Research, 12(3), 567-567.
DeGroot, D.J., & Baecher, G.B. (1993). Estimating autocovariance of in-situ soil properties. Journal of Geotechnical Engineering, 119(1), 147–166. doi: 10.1061/(ASCE)0733-9410(1993)119:1(147)
Emami, S., Choopan, Y., Kheiry goje biglo, M., & Hesam, M. (2020). Optimal and economic water allocation in irrigation and drainage network using ICA Algorithm (Case study: Sofi-Chay Network). Irrigation and Water Engineering, 10(3), doi: 10.22125/iwe.2020.107104. [In Persian]
Fenton, G.A., & Griffiths, D.V. (1996). Statistics of free surface flow through stochastic Earth Dam. Journal of Geotechnical Engineering, 122(6), 427-436. doi:10.1061/(ASCE)0733-9410122:6(427).
Fukumoto, Y., Yang, H., Hosoyamada, T., & Ohtsuka, S. (2021). 2-D coupled fluid-particle numerical analysis of seepage failure of saturated granular soils around an embedded sheet pile with no macroscopic assumptions. Computers and Geotechnics, 136, 104234.‏ doi:10.1016/j.
compgeo.2021.104234
Gelhar, L.W. (1976). Effects of hydraulic conductivity variations on groundwater flows.‏ http://pascal-francis.inist.fr.
Giglou, K.A., Biglou, M.K.G., Mehrparvar, B., & Naghadeh, A. S. (2019). Investigating amount of leakage, sediment and durability in geosynthetic cover of pumping channel 3 at irrigation network of Moghan. Revista Geoaraguaia, 9(2). Recuperado de https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/8979
Gui, S., Zhang, R., Turner, J.P., & Xue, X. (2000). Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 1-9.‏ doi: 10.1061/(ASCE)1090-0241(2000)126:1(1).
Helton, J.C. (1997). Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4), 3-76. doi:10.1080/00949659708811803.
Helton, J.C., Johnson, J.D., & Sallaberry, C.J. (2011). Quantification of margins and uncertainties: example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty. Reliability Engineering & System Safety, 96(9), 1014-1033. doi:10.1016/j.ress.2011.02.012
Helton, J.C., & Johnson, J.D. (2011). Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty. Reliability Engineering & System Safety, 96(9), 1034-1052. doi:10.1016/j.ress.2011.02.013
Helton, J.C. (2011). Quantification of margins and uncertainties: Conceptual and computational basis. Reliability Engineering & System Safety, 96(9), 976-1013. doi;10.1016/j.ress.2011.
03.017
Jafarian, Y., & Nasri, E. (2016). Evaluation of uncertainties in the existing empirical models and probabilistic prediction of liquefaction-induced lateral spreading. Amirkabir Journal of Civil Engineering, 48(3), 275-290. doi: 10.22060/ceej.2016.674
Johari, A., Heydari, A., & Talebi, A. (2021). Prediction of discharge flow rate beneath sheet piles using scaled boundary finite element modeling database. Scientia Iranica, 28(2), 645-655.‏ doi: 10.24200/SCI.2020.
53281.3158
Kalateh, F., & kheiry Ghoujeh-Biglou, M. (2022a). Probabilistic analysis of seepage in earthen dam using Monte Carlo method and with considering permeability of materials and dam geometry. Irrigation and Drainage Structures Engineering Research, 23(86), 133-162. doi: 10.22092/idser.2022.358681.1509. [In Persian]
Kalateh, F., & Kheiry, M. (2022b). Finite elements modeling of the seepage through earth dam in isotropic and non-isotropic conditions and considering the of downstream and reservoir water level.‏ 2nd International Conference on Architecture, Civil Engineering, Urban Development, Environment and Horizons of Islamic Art in the Second Step Statement of the RevolutionAt: Tabriz Islamic Art University, Tabriz, Iran. [In Persian]
Kalateh, F., & Hosseinejad, F. (2020). Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method. Frontiers of Structural and Civil Engineering, 14(2), 387-410.‏ doi;10.1007/s11709-019-0601-z
Kalateh, F., Hosseinejad, F., & Kheiry, M., (2022). Uncertainty quantification in the analysis of liquefied soil response through Fuzzy Finite Element method. Acta Geodynamica et Geomaterialia, 19(3), 177–199. doi: 10.13168/AGG.2022.0007.
Kheiry Ghojeh-biglou, M., & Pilpayeh, A. (2019). Effect of geometric specifications of ogee spillway on the volume variation of concrete consumption using genetic algorithm. Revista Ingeniería UC, 26(2), 145-153.‏
Kheiry Ghojeh Biglou, M., & Pilpayeh, A. (2020). Optimization of height and length of ogee-crested spillway by composing genetic algorithm and regression models (Case Study: Spillway of Balarood Dam). Irrigation and Drainage Structures Engineering Research, 20(77), 39-56. doi: 10.22092/idser.2019.124
750.1368. [In Persian]
Kouhpeyma, A., Kilanehei, F., Hassanlourad, M., & Ziaie-Moayed, R. (2022). Numerical and experimental modelling of seepage in homogeneous earth dam with combined drain. ISH Journal of Hydraulic Engineering, 28(3), 292-302.‏ doi:10.1080/09715010.2021.1891469
Liu, K., Vardon, P., & Hicks, M. (2019). Probabilistic analysis of seepage for internal stability of earth embankments. Environmental Geotechnics, 1-46. doi:10.1680/jenge.17.00040
Lumb, P. (1966). The variability of natural soils. Canadian geotechnical journal, 3(2), 74–97. doi: 10.1139/t66-009
Mazaheri, A., Komasi, M., Soraghi, M., & Nasiri, M. (2020). Studying the effect of geometric characteristics of dam on downstream saturation in earth dam. Iranian Journal of Soil and Water Research, 51(9), 2235-2246. doi: 10.22059/ijswr.2020.299195.668535
Momeneh, S. (2022). Performance comparison of artificial intelligence models with IHACRES model in streamflow modeling of the Gamasiab River catchment. Water and Soil Management and Modelling, 2(3), 1-16. doi: 10.22098/mmws.2022.9972.1076. [In Persian]
Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P., & Bacconnet, C. (2019). Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data. Engineering Geology, 259, 105190.‏ doi: 10.1016/j.enggeo.2019.105190
Parsaie, A., Haghiabi, A.H., Latif, S.D., & Tripathi, R.P. (2021). Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models. Environmental Science and Pollution Research, 28(43), 60842-60856.‏ doi: 10.1007/s11356-021-15029-4
Pasha, E., Mostafaei, H., Khalaj, M., & Khalaj, F. (2013). Calculate the uncertainty interval based on entropy and Dempster Shafer theory of evidence. International Journal of Industiral Engineering & Producion Management, 24(2), 215-223. http://ijiepm
.iust.ac.ir/article-1-406-fa.html.
Peck, R. B. (1967). Stability of natural slopes. Journal of the Soil Mechanics and Foundations Division, 93(4), 403–417. doi: 10.1061/JSFEAQ.0000998
Silva, A.V., Neto, S.A.D. and de Sousa Filho, F.D.A. (2016). A Simplified method for risk assessment in slope stability analysis of Earth Dams using fuzzy numbers. Elecronic Journal of Geotechnical Engineering, 21(10), 3607–3624.
Smith, L., & Freeze, R.A. (1979a). Stochastic analysis of steady state groundwater flow in a bounded domain: 1. one‐dimensional simulations. Water Resources Research, 15(3), 521-528. doi: 10.1029/WR015i003p00521
Smith, L., & Freeze, R.A. (1979b). Stochastic analysis of steady state groundwater flow in a bounded domain: 2. two‐dimensional simulations. Water Resources Research, 15(6), 1543-1559. doi: 10.1029/WR015i006p01543
Merufinia, E., Sharafati, A., Abghari, H., & Hassanzadeh, Y. (2022). The streamflow predition of Kurkursar river using hybrid artificial intelligence models with soft computing approach. Water and Soil Management and Modelling, 3(1), 181-199. doi: 10.22098/mmws.2022.11657.1150. [In Persian]
Smith, L., & Griffiths, D. (2004). Programming the finite element method. John Wiley & Sons.
Tan, X., Wang, X., Khoshnevisan, S., Hou, X., & Zha, F. (2017). Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Engineering Geology, 228, 260-269. doi: 10.1016/j.enggeo.
2017.08.018
Vanmarcke, E. H. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11), 1227–1246. doi:10.1061/AJGEB6.0000517
Yang, D., Xu, C., & Wang, H. (2022). Analysis of the causes of abnormal seepage in Hualiangting reservoir. In Advances in Measurement Technology, Disaster Prevention and Mitigation (pp. 575-581). CRC Press.‏
Zhang, W., Dai, B., Liu, Z., & Zhou, C. (2017). Unconfined seepage analysis using moving kriging mesh-free method with Monte Carlo Integration. Transport in Porous Media, 116(1), 163-180. doi:10.1007/s11242-016-0769-9