References
Alipour, A., Yarahmadi, J., & Mahdavi, M. (2014). Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products.
Journal of Climatology,11(42), 16-50.
doi:10.1155/2014/839205
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements- FAO Irrigation and Drainage paper 56. Fao, Rome, 300(9).
Antonopoulos, V.Z., & Antonopoulos, A.V. (2017). Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables.
Computers and Electronics in Agriculture, 132, 86-96.
doi:10.1016/j.compag.2016.11.011
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/A:1010933404324
Caudill, M., & Butler, C. (1992). Understanding neural networks; Computer Explorations. MIT press.
Chen, G., Long, T., Xiong, J., & Bai, Y. (2017). Multiple random forests modelling for urban water consumption forecasting. Water Resources Management, 31(15), 4715-4729. doi:10.1007/s11269-017-1774-7
Chia, M. Y., Huang, Y. F., Koo, C.H., & Fung, K.F. (2020). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—a review.
Agronomy, 10(1), 101.
doi:10.3390/agronomy10010101
Dehghani, T., Ahmadpari, H., & Amini, A. (2022). Assessment of land use changes using multispectral satellite images and artificial neural network.
Water and Soil Management and Modelling,
3(2), 18-35. doi:
10.22098/mmws.2022.11279.1114 [In Persian]
Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N’Diaye, M.K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley
. Journal of Hydrology: regional studies, 60(1), 139-159
. doi:10.1016/j.ejrh.2015.02.002
Eslamian, S., Khordadi, M.J., & Abedi-Koupai, J. (2011). Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions.
Global and Planetary Change, 78(3-4), 188-194.
doi:10.1016/j.gloplacha.2011.07.001
Fawzy, H. E.D., Sakr, A., El-Enany, M., & Moghazy, H.M. (2021). Spatiotemporal assessment of actual evapotranspiration using satellite remote sensing technique in the Nile Delta, Egypt.
Alexandria Engineering Journal, 60(1), 1421-1432.
doi:10.1016/j.aej.2020.11.001
Hadadi, F., Moazenzadeh, R., & Mohammadi, B. (2022). Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence.
Journal of Hydrology, 609, 127774.
doi:10.1016/j.jhydrol.2022.127774
Hargreaves, G.H., & Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99.doi: 10.13031/2013.26773
Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions.
Journal of Hydrology, 574, 1029-1041.
doi:10.1016/j.jhydrol.2019.04.085
Kim, N., Kim, K., Lee, S., Cho, J., & Lee, Y. (2020). Retrieval of daily reference evapotranspiration for croplands in South Korea using machine learning with satellite images and numerical weather prediction data.
Remote Sensing, 12(21), 364.
doi:10.3390/rs12213642
Koch, J., Berger, H., Henriksen, H. J., & Sonnenborg, T.O. (2019). Modelling of the shallow water table at high spatial resolution using random forests. Hydrology and Earth System Sciences, 23(11), 4603-4619. doi:10.5194/hess-23-4603-2019
Kumar, B.P., Babu, K.R., Anusha, B., & Rajasekhar, M. (2022). Geo-environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach.
Environmental Challenges, 8, 100578.
doi:10.1016/j.envc.2022.100578
Kumar, B.P., Babu, K.R., Ramachandra, M., Krupavathi, C., Swamy, B. N., Sreenivasulu, Y., & Rajasekhar, M. (2020). Data on identification of desertified regions in Anantapur district, Southern India by NDVI approach using remote sensing and GIS.
Data in Brief, 30, 105560.
doi:10.1016/j.dib.2020.105560
Moore, R., & Hansen, M. (2011). Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. AGU Fall Meeting Abstracts.
Nouri, H., Faramarzi, M., Sobhani, B., & Sadeghi, S. (2017). Estimation of evapotranspiration based on surface energy balance algorithm for land (SEBAL) using Landsat 8 and MODIS images.
Applied Ecology and Environmental Research, 15(4), 1971-1982. doi:
10.15666/aeer/1504_19711982
Pagano, T.S., & Durham, R.M. (1993). Moderate resolution imaging spectroradiometer (MODIS).
Sensor Systems for the Early Earth Observing System Platforms, 31(15). doi:
10.1117/12.152835
Panahi, S., Karbasi, M., & Nikbakht, J. (2016). Forecasting of Reference Evapotranspiration using MLP, RBF, and SVM Neural Networks. Environment and Water Engineering, 2(1), 51-63. [In Persian]
Raju, K.S., Kumar, D.N., & Duckstein, L. (2006). Artificial neural networks and multicriterion analysis for sustainable irrigation planning.
Computers & Operations Research, 33(4), 1138-1153.
doi:10.1016/j.cor.2004.09.010
Samadianfard, S., & Panahi, S. (2019). Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree.
Journal of Watershed Management Research,
9(18), 157-167. doi:
10.29252/jwmr.9.18.157 [In Persian]
Sattari, M.T., Apaydin, H., Band, S.S., Mosavi, A., & Prasad, R. (2021). Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrology and Earth System Sciences, 25(2), 603-618. doi:10.5194/hess-25-603-2021
Shrestha, N., Geerts, S., Raes, D., Horemans, S., Soentjens, S., Maupas, F., & Clouet, P. (2010). Yield response of sugar beets to water stress under Western European conditions.
Agricultural Water Management,
97(2), 346-350.
doi:10.1016/j.agwat.2009.10.005
Sutariya, S., Ankur, H., & Tiwari, M. (2022). Development of Modeler for Automated Mapping of Land Surface Temperature Using GIS and LANDSAT-8 Satellite Imagery. International Journal of Environment and Geoinformatics, 9(2), 54-59. doi: 10.30897/ijegeo.820
Tabari, H., & Hosseinzadeh Talaee, P. (2013). Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Computing and Applications, 23(2), 341-348. doi:10.1007/s00521-012-0904-7
Tafi, S., Peyghan, K., Bagheri Khaneghahi, M., Salehipour Bavarsad, T., & Soltani Mohamadi, A. (2021). Evaluation of fourteen methods of estimation reference evapotranspiration (Case study: Mazandaran Province).
Iranian Journal of Irrigation & Drainage, 3(15), 510-520 (in Persian).
dor:
20.1001.1.20087942.1400.15.3.3.7
Talaee, P.H., Heydari, M., Fathi, P., Marofi, S., & Tabari, H. (2012). Numerical model and computational intelligence approaches for estimating flow through rockfill dam.
Journal of Hydrologic Engineering, 17(4), 528-536.
doi:10.1061/(ASCE)HE.1943-5584.0000446
Talebi, H., Samadianfard, S., & Kamran, K.V. (2023). Investigating the roles of different extracted parameters from satellite images in improving the accuracy of daily reference evapotranspiration estimation. Applied Water Science, 13(2), 1-11. doi:10.1007/s13201-022-01862-6
Taloor, A.K., Kothyari, G.C., Manhas, D.S., Bisht, H., Mehta, P., Sharma, M., Mahajan, S., Roy, S., Singh, A.K., & Ali, S. (2021). Spatio-temporal changes in the Machoi glacier Zanskar Himalaya India using geospatial technology.
Quaternary Science Advances, 4, 100031.
doi:10.1016/j.qsa.2021.100031
Valipour, M. (2016). How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations?.
Agriculture, 6(4), 53.
doi:10.3390/agriculture6040053
Wu, L., Peng, Y., Fan, J., Wang, Y., & Huang, G. (2021). A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation.
Agricultural Water Management, 245, 106624.
doi:10.1016/j.agwat.2020.106624
Wu, M., Feng, Q., Wen, X., Deo, R.C., Yin, Z., Yang, L., & Sheng, D. (2020). Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region.
Hydrology Research, 51(4), 648-665.
doi:10.2166/nh.2020.012
Yurtseven, I., & Serengil, Y. (2021). Comparison of different empirical methods and data-driven models for estimating reference evapotranspiration in semi-arid Central Anatolian Region of Turkey. Arabian Journal of Geosciences, 14(19), 1-28. doi:10.1007/s12517-021-08150-8
Zhang, Z., Gong, Y., & Wang, Z. (2018). Accessible remote sensing data based reference evapotranspiration estimation modelling.
Agricultural Water Management, 210, 59-69.
doi:10.1016/j.agwat.2018.07.039