Alahacoon, N., & Edirisinghe, M. (2022). A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale.
Geomatics, Natural Hazards and Risk, 13(1), 762–799.
doi:10.1080/19475705.2022.2044394
Baaghideh, M., Alijani, B., & Raziaian, P. (2011). Evaluating the possibility of using the NDVI index to analyze and monitor droughts in Esfahan Province. Journal of Arid Regions Geographic Studies, 1(4), 1-16. [In Persian]
Ebadi Nehari, Z., Erfanian, M., & Porchorsi Sima, K. (2018). Presenting a new method for the comprehensive evaluation and monitoring of drought in the Urmia Lake catchment area using the integrated drought index. Journal of Geographical Sciences, 23(68), 243-257. [In Persian]
D’Odorico, P., Gonsamo, A., Damm, A., & Schaepman, M.E. (2013). Experimental evaluation of sentinel-2 spectral response functions for NDVI time-series continuity.
IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1336–1348. doi:
10.1109/TGRS.2012.2235447
Dutta, D., Kundu, A., & Patel, N.R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index.
Geocarto International, 28(3), 192–209.
doi:10.1080/10106049.2012.679975
Gandhi, G.M., Parthiban, S., Thummalu, N., & Christy, A. (2015). NDVI: Vegetation change detection using remote sensing and GIS - A Case Study of Vellore District.
Procedia Computer Science, 57, 1199–1210.
doi:10.1016/j.procs.2015.07.415
Ghasemi, P., Karbasi, M., Nouri, A.Z., & Tabrizi, M.S. (2021). SPEI 12 Application of combined artificial neural network model and meta- heuristic optimization algorithms in predicting.
Water and Irrigation Management, 11(2), 173-188. doi:
10.22059/jwim.2021.318390.859 [In Persian]
Ghermezecheshme, B., Zand, M., Kothari, M.R., Kargar, H., Shokri, A., Aliwardlo, M., & Nowrozi, Kh. (2021). Investigation and evaluation of pasture drought in Lorestan province. Soil Conservation and Watershed Research Institute. Research Project Report, 91 pages. [In Persian]
Jahangir, M., Asghari Kalshani, F., & Satarian Asil, K. (2022). Comparative study of meteorological (SPI) and hydrological (SSI) drought indices based on the best cumulative distribution function for Urmia catchment.
Soil and Water Modeling and Management, 2(4), 53-63. doi:
10.22098/mmws.2022.10810.1089 [In Persian]
Jahangir, M., Hosseindoost, M., & Arast, M. (2021). Assessment of drought condition in Guilan Province using the Keetch–Byram Drought Index (KBDI) in accordance with the Percent of Normal Precipitation Index (PNPI).
Water and Soil Management and Modeling, 1(4), 57-67. doi:
10.22098/mmws.2021.9407.1038 [In Persian]
Janbozorgi, M., Hanifepour, M., & Khosravi, H. (2021). Temporal changes in meteorological-hydrological drought (Case study: Guilan Province).
Water and Soil Management and Modelling, 1(2), 1-13. doi:
10.22098/mmws.2021.1215 [In Persian]
Hao, Z., Singh, V.P., & Xia, Y. (2018). Seasonal Drought Prediction: Advances, Challenges, and Future Prospects.
Reviews of Geophysics, 56(1), 108–141.
doi:10.1002/2016RG000549
He, Y., Wetterhall, F., Cloke, H.L., Pappenberger, F., Wilson, M., & Freer, J. (2009). Tracking the uncertainty in flood alerts driven by grand.
Meteorological Applications, 101, 91–101.
doi:10.1002/met.132
Jalili, M., Gharibshah, J., Ghavami, S.M., Beheshtifar, M., & Farshi, R. (2014). Nationwide prediction of drought conditions in Iran based on remote sensing data.
IEEE Transactions on Computers, 63(1), 90–101. doi:
10.1109/TC.2013.118
Jang, O.J., Moon, H.T., & Moon, Y.I. (2022). Pronóstico de sequías para tomadores de decisiones utilizando análisis de balance hídrico y redes neuronales profundas. Water, 14(12), 1922.
Karimi, M., & Shahedi, K. (2018). Investigation of meteorological, hydrological and agricultural drought using drought indices (Case study: Gharehsou watershed). Remote Sensing and Geographical Information System in Natural Resources, 9(2), 144-158. [In Persian]
Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations.
Remote Sensing of Environment, 164, 298–313.
doi:10.1016/j.rse.2015.04.004
Li, S., Yao, Z., Liu, Z., Wang, R., Liu, M., & Adam, J.C. (2019). The spatio-temporal characteristics of drought across Tibet, China: derived from meteorological and agricultural drought indics.
Theoretical and Applied Climatology, 137(3-4), 2409–2424. doi:
10.1007/s00704-018-2733-9
Lillesand, T.M., & Kiefer, R.W. (1994). Remote sensing and image interpretation. 3rd edition. In Remote sensing and image interpretation.
Loukas, A., Vasiliades, L., & Tzabiras, J. (2008). Climate change effects on drought severity. Advances in Geosciences, 17, 23–29. doi:10.5194/adgeo-17-23-2008
Magallane, R., Tejada, C.E., Galván, J.I., Méndez, S. de J., García-Domínguez, A., & Gamboa-Rosales, H. (2022). Narx neural networks models for prediction of standardized precipitation index in Central Mexico.
Atmosphere, 13(8), 1254.
doi:10.3390/atmos13081254
McKee, T.B., Doesken, N.J., & Kleist, J. (1993) The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, Anaheim, Pp.179-184.
Mitter, H., Schmid, E., & Schneider, U.A. (2014). Modelling impacts of drought and adaptation scenarios on crop production in Austria. Journal of the Austrian Society of Agricultural Economics, 24, 223-232.
Mohammadrezaei, M., Soltani, S., & Modares, R. (2022). The effect of Enso temperature indices on meteorological drought in the western half of Iran.
Soil and Water Modeling and Management, 2(2), 13-27 . doi:
10.22098/mmws.2022.9632.1053 [In Persian]
Modarres, R., & Sarhadi, A. (2009). Rainfall trends analysis of Iran in the last half of the twentieth century.
Journal of Geophysical Research Atmospheres, 114(3), 1–9.
doi:10.1029/2008JD010707
Mokhtari, R., & Akhoondzadeh, M. (2019). Neural network method for drought modeling using satellite data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 42(4/W18), 749-753. doi:10.5194/isprs-archives-XLII-4-W18-749-2019
Mirmohammadhosseini, T., Hosseini, S.A., Ghermezcheshmeh, B., & Sharafati, A. (2021a). Impact of meteorological drought on vegetation in non-irrigated lands.
Quarterly Journal of the Hungarian Meteorological Service, 125(3), 463-476.
doi:10.28974/idojaras.2021.3.6
Mirmohammad Hosseini, T., Karmazecheshme, B., Hosseini, A., & Shrafati, A. (2021b). An assessment of the relationships between meteorological drought index and vegetation condition in dry farming in the Province of Lorestan.
Watershed Management Research, 34(2), 77-90. [In Persian] doi:
10.22092/wmej.2020.342647.1332
Nateghi, S., Nohegar, A., Ehsani, A.H., & Bazrafshan, O. (2017). Evaluating the vegetation changes upon vegetation index by using remote sensing.
Iranian Journal of Rangeland and Research,
24(4), 778-790.
doi:10.22092/ijrdr.2017.114889 [In Persian]
Sharafati, A., Nabaei, S., & Shahid, S. (2020). Spatial assessment of meteorological drought features over different climate regions in Iran.
International Journal of Climatology, 40(3), 1864–1884.
doi:10.1002/joc.6307
Tian, Y., Xu, Y.P., & Wang, G. (2018). Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin.
Science of the Total Environment, 622–623, 710–720.
doi:10.1016/j.scitotenv.2017.12.025
Vicente-Serrano, S.M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index.
Journal of Climate, 23(7), 1696-1718.
doi:10.1175/2009JCLI2909.1
Younesi, M., Shahraki, N., Marofi, S., & Nozari, H. (2018). Artificial wavelet neural network integrated model (WA-ANN) and time series model (ARIMA). I
rrigation Science and Engineering, 41(2), 167-181. doi:
10.22055/jise.2018.13669 [In Persian]
Zare Abianeh, H., Mehboubi, A., & Nishaburi, M. (2004). Investigating the drought situation and its trend in Hamedani region based on drought statistical indicators. Pajouhesh Va Sazandgi, 3(2), 2-7. [In Persian]
Zambrano, F., Vrieling, A., Nelson, A., Meroni, M., & Tadesse, T. (2018). Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices.
Remote Sensing of Environment, 219(25), 15-30.
doi:10.1016/j.rse.2018.10.006