Belnap, J. (2003). The world at your feet: Desert biological soil crusts.
Frontiers in Ecology and the Environment, 1(4), 181-189.
doi:10.2307/3868062
Belnap, J., & Eldridge, D. (2001). Disturbance and recovery of biological soil crusts. In: Biological Soil Crusts: Structure, Function, and Management, Springer Berlin Heidelberg. doi:10.1007/978-3-642-56475-8_27
Belnap, J., & Gillette, D.A. (1997). Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation & Development, 8(4), 355-362. doi:10.1002/(SICI)1099- 145X(199712)8:4<355::AID-LDR266>3.0.CO;2-H
Belnap, J., & Gillette, D.A. (1998). Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance.
Journal of Arid Environments, 39(2), 133-142.
doi:10.1006/jare.1998.0388
Chepil, W.S. (1955). Factors that influence clod structure and erodibility of soil by wind: 111. calcium carbonate and decomposed organic matter. Soil Science, 77(6), 4473-480.
Davari Dolat Abadi, A., GHaazi Fard, A., Shirani, K., & Heydari, F. (2020). Investigation the application of saline waters in Segzi Plain with emphasis on the wind erosion control.
Watershed Engineering and Management, 12(2), 492-504.
doi:10.22092/ijwmse.2019.122154.1496 [In Persian]
Eldridge, D.J., & Leys, J.F. (2003). Exploring some relationships between biological soil crusts, soil aggregation and wind erosion.
Journal of Arid Environments, 53(4), 457-466.
doi:10.1006/jare.2002.1068
Enanani, M., Amirian Chakan, A.R., Faraji, M., & Yosefi Khaneghah, Sh. (2017). Using erosivity indices and surface crusts in soil sensitivity to wind erosion. 15th National Soil Congress, Isfahan, Iran. [In Persian]
Fang, H.Y., Cai, Q.G., Chen, H., & Li, Q.Y. (2007). Mechanism of formation of physical soil crust in desert soils treated with straw checkerboards.
Soil and Tillage Research, 93(1), 222-230.
doi:10.1016/j.still.2006.04.006
Gillette, D.A., Adams, J., Muhs, D., & Kihl, R. (1982). Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air.
Journal of Geophysical Research Atmospheres, 87(11), 9003-9016. doi:
10.1029/JC087iC11p09003
Grünberger, O., Macaigne, P., Michelot, J.L., Hartmann, C., & Sukchan, S. (2008). Salt crust development in paddy fields owing to soil evaporation and drainage: Contribution of chloride and deuterium profile analysis.
Journal of Hydrology, 348(1-2), 110-123.
doi:10.1016/j.jhydrol.2007.09.039
Houser, C.A., & Nickling, W.G. (2001). The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa.
Earth Surface Processes and Landforms, 26(5), 491-505. doi:
10.1002/esp.193
Kalantari Kh. (2003). Data processing and analysis in socio-economic research. Sharif Publication, 388 pages.
Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services.
Science of The Total Environment, 610-611, 997-1009.
doi:10.1016/j.scitotenv.2017.08.077
Kéry, M., & Royle, J.A. (2016). linear models, generalized linear models (glms), and random effects models: The components of hierarchical models. In: KÉRY, M., & ROYLE, J.A. (eds.), Applied Hierarchical Modeling in Ecology, Boston, Academic Press.
Khoshnood Motlagh, S., Sadoddin, A., Haghnegahdar, A., Razavi, S., Salmanmahiny, A., & Ghorbani, K. (2021). Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran.
Land Degradation & Development, 32(10), 3092-3105. doi:
10.1002/ldr.3969
Klose, M., Gill, T.E., Etyemezian, V., Nikolich, G., Ghodsi Zadeh, Z., Webb, N.P., & Van Pelt, R.S. (2019). Dust emission from crusted surfaces: Insights from field measurements and modelling.
Aeolian Research, 40, 1-14.
doi:10.1016/j.aeolia.2019.05.001
Li, S., Li, C., & Fu, X. (2021). Characteristics of soil salt crust formed by mixing calcium chloride with sodium sulfate and the possibility of inhibiting wind-sand flow. Scientific Reports, 11(1), 9746. doi:10.1038/s41598-021-89151-1
Mousavi, F., Abdi, E., Ghalandarayeshi, S., & Page-Dumroese, D.S. (2021). Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength.
CATENA, 196, 104890.
doi:10.1016/j.catena.2020.104890
Pi, H., Huggins, D.R., & Sharratt, B. (2020). Influence of clay amendment on soil physical properties and threshold friction velocity within a disturbed crust cover in the inland pacific northwest.
Soil and Tillage Research, 202, 104659.
doi:10.1016/j.still.2020.104659
Pi, H., & Sharratt, B. (2019). Threshold friction velocity influenced by the crust cover of soils in the columbia plateau.
Soil Science Society of America Journal, 83(1), 232-241. doi:
10.2136/sssaj2018.06.0230
Pi, H., Webb, N.P., Huggins, D.R., & Sharratt, B. (2021). Influence of physical crust cover on the wind erodibility of soils in the inland pacific northwest, USA.
Earth Surface Processes and Landforms, 46(8), 1445-1457. doi:
10.1002/esp.5113
Rice, M.A., & Mcewan, I.K. (2001). Crust strength: A wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces.
Earth Surface Processes and Landforms, 26(7), 721-733.
doi:10.1002/esp.217
Rice, M.A., Mcewan, I.K., & Mullins, C.E. (1999). A conceptual model of wind erosion of soil surfaces by saltating particles. Earth Surface Processes and Landforms, 24(5), 383-392. doi:10.1002/(SICI)1096-9837(199905)24:5<383::AID-ESP995>3.0.CO;2-K
Rolston, D.E., Bedaiwy, M.N.A., & Louie, D.T. (1991). Micropenetrometer for in situ measurement of soil surface strength.
Soil Science Society of America Journal, 55(2), 481.
doi:10.2136/sssaj1991.03615995005500020031x
Sirjani, E., Sameni, A.M., Mousavi, S.A.A., & Mahmoudabadi, M. (2017). Relationship between soil features and wind erosion in Fars Province. 15th Natinal soil Congress, Isfahan Iran, Pp. 1-6. [In Persian]
Stovall, M.S., Ganguli, A.C., Schallner, J.W., Faist, A. M., Yu, Q., & Pietrasiak, N. (2022). Can biological soil crusts be prominent landscape components in rangelands? A case study from new mexico, USA.
Geoderma, 410, 115658.
doi:10.1016/j.geoderma.2021.115658
Thomas, A.D., & Dougill, A.J. (2007). Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties.
Geomorphology, 85(1-2), 17-29.
doi:10.1016/j.geomorph.2006.03.029
Webb, N.P., Mcgowan, H.A., Phinn, S.R., Leys, J.F., & Mctainsh, G.H. (2009). A model to predict land susceptibility to wind erosion in western queensland, australia.
Environmental Modelling & Software, 24(2), 214-227.
doi:10.1016/j.envsoft.2008.06.006
Webb, N.P., & Strong, C.L. (2011). Soil erodibility dynamics and its representation for wind erosion and dust emission models.
Aeolian Research, 3(2), 165-179.
doi:10.1016/j.aeolia.2011.03.002
Yan, Y., Wu, L., Xin, X., Wang, X., & Yang, G. (2015). How rain-formed soil crust affects wind erosion in a semi-arid steppe in northern china.
Geoderma, 249-250, 79-86.
doi:10.1016/j.geoderma.2015.03.011
Yasrebi, B., Abbasi, H., Behnamfar, K., & Dinarvand, M. (2022). Land use/ land cover dynamic modeling using RS and GIS with emphasis on maximum likelihood rule and transition matrix. ECOPERSIA, 10(3), 191-202.
Zhang, Y.M., Wang, H.L., Wang, X.Q., Yang, W.K., & Zhang, D.Y. (2006). The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the gurbantunggut desert of northwestern china.
Geoderma, 132(3), 441-449.
doi:10.1016/j.geoderma.2005.06.008
Zobeck, T.M. (1991). Abrasion of crusted soils: influence of abrader flux and soil properties. Soil Science Society of America Journal, 55(4), 1091-1097. doi:10.2136/sssaj1991.03615995005500040033x