References
Belnap, J. (2006). The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes An International Journal, 20(15), 3159-3178. doi:10.1002/hyp.6325
Belnap, J., Kaltenecker, J.H., Rosentreter, R., Williams, J., Leonard, S., & Eldridge, D. (2001). Biological soil crusts: ecology and management. US Department of the Interior, Bureau of Land Management, National Science and Technology Center. Denver, Colorado, 110 pages.
Belnap, J., Weber, B., & Büdel, B. (2016). Biological soil crusts as an organizing principle in drylands. Pp. 3-13, In: Ecological Studies, 226, Springer-Verlag.
Chamizo, S., Cantón, Y., Lázaro, R., & Domingo, F. (2014). The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. Journal of Hydrology, 489, 74-84. doi:10.1016/j.jhydrol.2013.02.051
Chamizo, S., Cantón, Y., Miralles, I., & Domingo, F. (2012). Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49, 96–105. doi:10.1016/j.soilbio.2012.02.017
Felde, V.J.M.N.L., Chamizo, S., Felix-Henningsen, P., & Drahorad, S.L. (2018). What stabilizes biological soil crusts in the Negev Desert?. Plant and Soil, 429(1), 9-18. doi:10.1007/s11104-017-3459-7
Guan, H., & Cao, R. (2019). Effects of biocrusts and rainfall characteristics on runoff generation in the Mu Us Desert, northwest China. Hydrology Research, 50(5), 1410-1423. doi:10.2166/nh.2019.046
Kakeh, J., Gorji, M., Mohammadi, M.H., Asadi, H., Khormali, F., Sohrabi, M., & Eldridge, D.J. (2021). Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized dryland soil. Geoderma, 404, 115329. doi:10.1016/j.geoderma.2021.115329
Kakeh, J., Gorji, M., Mohammadi, M.H., Asadi, H., Khormali, F., Sohrabi, M., & Cerd`a, A. (2020). Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir, Iran. Science of The Total Environment, 732, 139–168. doi:10.1016/j.scitotenv.2020.139168
Niu, J., Yang, K., Tang, Z., & Wang, Y. (2017). Relationships between soil crust development and soil properties in the desert region of North China. Sustainability, 9(5), 725, 1–15. doi:10.3390/su9050725
Ouyang, Y., & Li, X. (2013). Recent research progress on soil microbial responses to drying–rewetting cycles. Acta Ecologica Sinica, 33(1), 1-6. doi:10.1016/j.chnaes.2012.12.001
Sims, J.T., Simard, R.R., & Joern, B.C. (1998). Phosphorus loss in agricultural drainage: Historical perspective and current research. Journal of Environmental Quality, 27(2), 277-293. doi:10.2134/jeq1998.00472425002700020006x
Stovall, M.S., Ganguli, A.C., Schallner, J.W., Faist, A.M., Yu, Q., & Pietrasiak, N. (2022). Can biological soil crusts be prominent landscape components in rangelands? A case study from New Mexico, USA. Geoderma, 410, 115658. doi:10.1016/j.geoderma.2021.115658
Williams, A., Buck, B., Soukup, D., & Merkler, D. (2010). Geomorphic controls of biological soil crust distribution, Mojave Desert (USA). In World Congress of Soil Science, Soil Solutions for a Changing World.
Xu, H., Zhang, Y., Shao, X., & Liu, N. (2022). Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis. Science of The Total Environment, 803, 150030. doi:10.1016/j.scitotenv.2021.150030