Amiri, F., & Tabatabaie, T. (2021). Classification and analysis of land use changes in urban environments using multi-temporal landsat images: A case study of Bushehr. Land Management Journal, 9(1), 167-186. doi:10.22092/lmj.2021.123619 [In Persian]
Aslan, N., & Koc-San, D. (2016). Analysis of relationship between urban heat island effect and land use/cover type using landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 821-828. doi:10.5194/isprs-archives-XLI-B8-821-2016
Bisquert, M., Bégué, A., & Deshayes, M. (2015). Object-based delineation of homogeneous landscape units at regional scale based on MODIS time series. International Journal of Applied Earth Observation and Geoinformation, 37, 72-82. doi:10.1016/j.jag.2014.10.004
Coulter, L.L., Stow, D.A., Tsai, Y.H., Ibanez, N., Shih, H.C., Kerr, A., Benza, M., Weeks, J.R., & Mensah, F. (2016). Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sensing of Environment, 184, 396-409. doi:10.1016/j.rse.2016.07.016
Dehghani, T., Ahmadpari, H., & Amini, A. (2022). Assessment of land use changes using multispectral satellite images and artificial neural network. Water and Soil Management and Modelling. 3(2), 18-35. doi:10.22098/mmws.2022.11279.1114 [In Persian]
Deng, Z., Zhu, X., He, Q., & Tang, L. (2019). Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 63(7), 2144-2154. doi:10.1016/j.asr.2018.12.005
Emelyanova, I.V., McVicar, T.R., Van Niel, T.G., Li, L.T., & van Dijk, A.I.J.M. (2013). Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sensing of Environment, 133, 193-209. doi:10.1016/j.rse.2013.02.007
Fakhar, M.S., & Nazari, B. (2022). Evaluation and validation of salinity monitoring indices in the Qazvin plain. Water and Soil Management and Modelling, 2(3), 40-51. doi:10.22098/mmws.2022.10142.1077 [In Persian]
Fu, P., & Weng, Q. (2016). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214. doi:10.1016/j.rse.2015.12.040
Fu, Y., Li, J., Weng, Q., Zheng, Q., Li, L., Dai, S., & Guo, B. (2019). Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Science of The Total Environment, 666, 274-284. doi:10.1016/j.scitotenv.2019.02.178
Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207- 2218. doi:10.1109/TGRS.2006.872081
Godinho, S., Guiomar, N., & Gil, A. (2016). Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal. International Journal of Applied Earth Observation and Geoinformation, 49, 151-162. doi:10.1016/j.jag.2016.02.008
Guan, H., Li, J., Chapman, M., Deng, F., Ji, Z., & Yang, X. (2013). Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. International Journal of Remote Sensing, 34(14), 5166-5186.
Hao, G., Wu Bo Zhang, L., Fu, D., & Li, Y. (2016). Temporal and spatial variation analysis of the area of Siling Co Lake in Tibet based on ESTARFM (1976–2014). Journal of Geographical Information Science, 18(6), 833-846. doi:10.3724/SP.J.1047.2016.00833
Hao, P., Wang, L., Niu, Z., Aablikim, A., Huang, N., Xu, S., & Chen, F. (2014). The potential of time series merged from Landsat-5 TM and HJ-1 CCD for crop classification: a case study for Bole and Manas Counties in Xinjiang, China. Remote Sensing, 6(8), 7610-7631. doi:10.3390/rs6087610
Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F., & White, J.C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613-1627. doi:10.1016/j.rse.2009.03.007
Hosseini, S.A., Khosravi, H., Gholami, H., Esmaeilpour, Y., & Cerda, A. (2020). Analysis of landuse changes on land degradation and desertification in coastal regions of southern Iran. Journal of Range and Watershed Managment, 73(2), 305-320. doi:10.22059/jrwm.2020.294312.1444 [In Persian]
Jahandari, J., Hejazi, R., Jozi, S.A., & Moradi, A. (2022). Impacts of urban expansion on spatio-temporal patterns of carbon storage ecosystem service in Bandar Abbas Watershed using InVEST software. Water and Soil Management and Modelling, 2(4), 91-106. doi:10.22098/mmws.2022.11069.1097 [In Persian]
Johnson, B.A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140-149. doi:10.1016/j.apgeog.2015.12.006
Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. Land Trendr-Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897-2910. doi:10.1016/j.rse.2010.07.008
Knauer, K., Gessner, U., Fensholt, R., & Kuenzer, C. (2016). An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sensing, 8(5), 425.
Lamine, S., Petropoulos, G.P., Singh, S.K., Szabó, S., Bachari, N.E.I., Srivastava, P.K., & Suman, S. (2018). Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto international, 33(8), 862-878. doi:10.1080/10106049.2017.1307460
Mack, B., Leinenkugel, P., Kuenzer, C., & Dech, S. (2017). A semi-automated approach for the generation of a new land use and land cover product for Germany based on Landsat time-series and Lucas in-situ data. Remote Sensing Letters, 8(3), 244-253. doi:10.1080/2150704X.2016.1249299
Melville, B., Lucieer, A., & Aryal, J. (2018). Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia. International Journal of Applied Earth Observation and Geoinformation, 66, 46-55. doi:10.1016/j.jag.2017.11.006
Munshi‐South, J., Zolnik, C.P., & Harris, S.E. (2016). Population genomics of the Anthropocene: Urbanization is negatively associated with genome‐wide variation in white‐footed mouse populations. Evolutionary Applications, 9(4), 546-564. doi:10.1111%2Feva.12357
Naeem, S., Cao, C., Fatima, K., Najmuddin, O., & Acharya, B.K. (2018). Landscape greening policies-based land use/land cover simulation for Beijing and Islamabad-An implication of sustainable urban ecosystems. Sustainability, 10(4), 1049. doi:10.3390/su10041049
Novack, T., Esch, T., Kux, H., & Stilla, U. (2011). Machine learning comparison between WorldView-2 and QuickBird-2-simulated imagery regarding object-based urban land cover classification. Remote Sensing, 3(10), 2263-2282. doi:10.3390/rs3102263
Pontius, J.R. (2018). PontiusMatrix21.xlsx (Workbook). wwwclarkuedu/~rpontius.
Robert, S., Fox, D., Boulay, G., Grandclément, A., Garrido, M., Pasqualini, V., Prévost, A., Schleyer-Lindenmann, A., & Trémélo, M.L. (2019). A framework to analyse urban sprawl in the French Mediterranean coastal zone. Regional Environmental Change, 19(2), 559-572. doi:10.1007/s10113-018-1425-4
Salehi, N., Ekhtesasi, M.R., & Talebi, A. (2019). Predicting locational trend of land use changes using CA-Markov model (Case study: Safarod Ramsar watershed). Journal of RS and GIS for Natural Resources, 10(1), 106-120. dor:20.1001.1.26767082.1398.10.1.7.4 [In Persian]
Shahtahmassebi, A.R., Lin, Y., Lin, L., Atkinson, P.M., Moore, N., Wang, K., Shan, H., Lingyan, H., Jiexia, W., & Shen, Z. (2017). Reconstructing historical land cover type and complexity by synergistic use of landsat multispectral scanner and corona. Remote Sensing, 9(7), 682. doi:10.3390/rs9070682
Shiferaw, H., Bewket, W., Alamirew, T., Zeleke, G., Teketay, D., Bekele, K., Schaffner, U., & Eckert, S. (2019). Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Science of The Total Environment, 675, 354-366. doi:10.1016/j.scitotenv.2019.04.220
Singha, M., Wu, B., & Zhang, M. (2016). An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sensing, 8(6), 479. doi:10.3390/rs8060479
Sukawattanavijit, C., Chen, J., & Zhang, H. (2017). GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(3), 284-288. doi:1109/LGRS.2016.2628406
Thenkabail, P.S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317-341. doi:10.1016/j.rse.2004.12.018
Wang, Y., Ziv, G., Adami, M., Mitchard, E., Batterman, S.A., Buermann, W., Schwantes Marimon, B., Marimon Junior, B.H., Matias Reis, S., Rodrigues, D., & Galbraith, D. (2019). Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sensing of Environment, 221, 474-488. doi:10.1016/j.rse.2018.11.028
Wu, M., Niu, Z., Wang, C., Wu, C., & Wang, L. (2012). Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model.
Journal of Applied Remote Sensing, 6(1), 063507.
doi:10.1117/1.JRS.6.063507
Yang, G., Chao, S., Tsou, J.Y., & Zhang, Y. (2019). Satellite image-based methods of spatiotemporal analysis on sustainable urban land use change and the driving factors: a case study in Caofeidian and the suburbs, China. Sustainability, 11(10), 2927. doi:10.3390/su11102927
Zhang, M., & Zeng, Y. (2015). Mapping paddy fields of Dongting Lake area by fusing Landsat and MODIS data. Transactions of the Chinese Society of Agricultural Engineering, 31(13), 178–185. doi:10.11975/j.issn.1002-6819.2015.13.025
Zhang, M., Zeng, Y., & Zhu, Y. (2017). Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented method. Journal of Remote Sensing, 21(3), 479-492. doi:10.11834/jrs.20176129
Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J.G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-2623. doi:10.1016/j.rse.2010.05.032
Zhu, Z., Fu Y., Woodcock, C.E., Olofsson, P., Vogelmann, J.E., Holden, C., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, 243-257. doi:10.1016/j.rse.2016.03.036