Alexandersson, H. (1986). A homogeneity test applied to precipitation data.
Journal of climatology, 6(6), 661-675.
doi:10.1002/joc.3370060607
Arif, S.N.A.M., Mohsin, M.F.M., Bakar, A.A., Hamdan, A.R., & Abdullah, S.M.S. (2017). Change point analysis: a statistical approach to detect potential abrupt change.
Jurnal Teknologi, 79(5).
doi:10.11113/jt.v79.10388
Asgari, E., Mostafazadeh, R., & Haji, K. (2019). Change point analysis of discharge time series in some hydrometric stations in Golestan Province. Journal of Environmental Science and Technology, 21(5), 81-93. doi:10.22034/jest.2018.21474.3049 [In Persian]
Beaulieu, C., Chen, J., & Sarmiento, J.L. (2012). Change-point analysis as a tool to detect abrupt climate variations.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), 1228-1249.
doi:10.1098/rsta.2011.0383
Chapman, D. (1996). Water quality assessments - a guide to use of biota, sediments and water in environmental monitoring. Second Edition, Great Britain at the University Press, Cambridge, 609 pages.
Chauluka, F., Singh, S., & Kumar, R. (2021). Rainfall and streamflow trends of Thuchila River, Southern Malawi.
Materials Today: Proceedings, 34, 846-855.
doi:10.1016/j.matpr.2020.06.228
Croitoru, A.E., Drignei, D., Holobaca, I.H., & Dragota, C.S. (2012). Change-point analysis for serially correlated summit temperatures in the Romanian Carpathians. Theoretical and Applied Climatology, 108(1), 9-18. doi:10.1007/s00704-011-0508-7
Dingman, S. L. (2002). Water in soils: infiltration and redistribution. In: Physical Hydrology (Second ed.), Upper Saddle River, New Jersey: Prentice-Hall, Inc.
Esfandyari Darabad, F., Mostafazadeh, R., Shahmoradi, R., & Nasiri Khiavi, A. (2019). The Analysis of the changes of the hydrological flow indices affected by dam construction in Zarrinehrood and Saruqchai Rivers of West Azerbaijan Province.
Hydrogeomorphology, 5(18), 57-77. doi:
20.1001.1.23833254.1398.6.18.4.3 [In Persian]
Fang Sang, Y., Wang, Z., & Liu, C. (2014). Comparison of the MK test and EMD method for trend identification in hydrological time Series.
Journal of Hydrology, 510, 293-298.
doi:10.1016/j.jhydrol.2013.12.039
Fantin-Cruz, I., Pedrollo, O., Girard, P., Zeilhofer, P., & Hamilton, S.K. (2015). Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil.
Journal of Hydrology, 531, 810-820.
doi:10.1016/j.jhydrol.2015.10.045
Fernández, J.A., Martínez, C., & Magdaleno, F. (2012). Application of indicators of hydrologic alterations in the designation of heavily modified water bodies in Spain.
Environmental Science & Policy, 16, 31-43.
doi:10.1016/j.envsci.2011.10.004
Gao, P., Mu, X.M., Wang, F., & Li, R. (2011). Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences, 15, 1–10. doi:10.5194/hess-15-1-2011, 2011
Hamed, K.H. (2007). Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis.
Journal of Hydrology, 349(3-4), 350-363.
doi:10.1016/j.jhydrol.2007.11.009
Huo, Z., Feng, S., Kang, S., Li, W., & Chen, S. (2008). Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China.
Hydrological Processes: An International Journal, 22(16), 3155-3167.
doi:10.1002/hyp.6900
IPCC, (2007). Fourth assessment report climate change. Paris. Journal of the American Statistical Association, 74, 365-367.
Kazemzadeh, M. (2015). Evaluation of climate change impacts on the hydrological characteristics of watershed, case study: Aji chai Watershed. M.Sc. Thesis, University of Tehran, 177 pages. [In Persian]
Kendall, M.G. (1948). Rank correlation methods. 4th Edition, Griffin, London.
Khapalova, E.A., Jandhyala, V.K., & Fotopoulos, S.B. (2013). Change-point analysis of annual mean precipitation for northern tropical and southern latitudes of the globe in the past century. Journal of Environmental Statistics, 4(3), 1-21.
Khosravi, G., Sadodin, A., Ownegh, M., Bahremand, A., & Mostafavi, H. (2019). Classification and identification of changes in river flow regime using the Indicators of Hydrologic Alteration (IHA) Case study: (The Khormarud River-Tilabad Watershed-Golestan Province).
Iranian Journal of Ecohydrology, 6(3), 651-671. doi:
10.22059/ije.2019.269287.982 [In Persian]
Killick, R., Eckley, I.A., Ewans, K., & Jonathan, P. (2010). Detection of changes in variance of oceanographic time-series using changepoint analysis.
Ocean Engineering, 37(13), 1120-1126.
doi:10.1016/j.oceaneng.2010.04.009
Liu, W., Shi, C., & Zhou, Y. (2021). Trends and attribution of runoff changes in the upper and middle reaches of the Yellow River in China.
Journal of Hydro-environment Research, 37, 57-66.
doi:10.1016/j.jher.2021.05.002
Mann, H.B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259. doi:10.2307/1907187
Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., & Guibas, L.J. (2019). Structurenet: Hierarchical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575.
doi:10.48550/arXiv.1908.00575
Mwedzi, T., Katiyo, L., Mugabe, F.T., Bere, T., Bangira, C., Mangadze, T., & Kupika, O.L. (2016). A spatial assessment of stream-flow characteristics and hydrologic alterations, post dam construction in the Manyame catchment, Zimbabwe.
Water SA, 42(2), 194-202.
doi:
10.4314/wsa.v42i2.03
Naderi, M.H., Zakerinia, M., & Salarijazi, M. (2019). Investigation of ecohydraulic indices in environmental flow regime and Habitat suitability simulation analysis using River2D Model with relying on the restoration ecological in zarrin-gol river.
Iranian Journal of Ecohydrology, 6(1), 205-222. doi:
10.22059/ije.2019.266895.962 [In Persian]
Nasiri Khiavi, A., Mostafazadeh, R., Esmali Ouri, A., Ghafarzadeh, O., & Golshan, M. (2019). Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using Range of Variability Approach.
Watershed Engineering and Management, 11(4), 851-865.
doi:10.22092/ijwmse.2018.116873.1413 [In Persian]
Papadaki, C., Soulis, K., Muñoz-Mas, R., Martinez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.
Science of the Total Environment, 540, 418-428.
doi:10.1016/j.scitotenv.2015.06.134
Pettitt, A.N. (1979). A non-parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), 126-135. doi:10.2307/2346729
Richter, B.D., Baumgartner, J.V., Powell, J., & Braun, D.P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10(4), 1163-1174.
Salehi, S., Dehghani, M., Mortazavi, S.M., & Singh, V.P. (2020). Trend analysis and change point detection of seasonal and annual precipitation in Iran.
International Journal of Climatology, 40(1), 308-323.
doi:10.1002/joc.6211
Sheikh, V., Babaei, A., & Mooshakhian, Y. (2009). Trend analysis of precipitation regime in the Gorganroud basin.
Iranian Journal of Watershed Management Science and Engineering,
3(8), 29-38. [In Persian]
Sheikh, V., Hezbi, A.J., & Bahremand, A.R. (2014). Distributed and dynamic modeling of the water balance of ChelChai watershed in the geographic information system environment. Watershed Management Research, 12, 29-42. [In Persian]
Sheikh, V., Zare Garizi, A., Alvandi, E., Asadi Nelivan, O., Khosravi, G., Saaduddin, A., & Ong, M. (2018). Collaborative location of proposed solutions to manage the Hablehroud watershed.
Watershed Research, 32(4), 2-18. doi:
10.22092/wmej.2019.125497.1194 [In Persian]
Shirvani, A. (2017). Change point detection of the Persian Gulf sea surface temperature. Theoretical and Applied Climatology, 127(1), 123-127. doi:10.1007/s00704-015-1625-5
Sneyres, R. (1990). Technical note no. 143 on the statistical Analysis of Time Series of Observation. World Meteorological Organisation, Geneva, Switzerland.
Su, L., Miao, C., Kong, D., Duan, Q., Lei, X., Hou, Q., & Li, H. (2018). Long-term trends in global river flow and the causal relationships between river flow and ocean signals.
Journal of Hydrology, 563, 818-833.
doi:10.1016/j.jhydrol.2018.06.058
Wang, S., McVicar, T.R., Zhang, Z., Brunner, T., & Strauss, P. (2020). Globally partitioning the simultaneous impacts of climate-induced and human-induced changes on catchment streamflow: A review and meta-analysis.
Journal of Hydrology, 590, 125387.
doi:10.1016/j.jhydrol.2020.125387
Wei, X., & Zhang, M. (2010). Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study.
Water Resources Research, 46(12).
doi:10.1029/2010WR009250
Wong, H., Hu, B.Q., Ip, W.C., & Xia, J. (2006). Change-point analysis of hydrological time series using grey relational method.
Journal of Hydrology, 324(1-4), 323-338.
doi:10.1016/j.jhydrol.2005.10.007
Xiong, L., & Guo, S. (2004). Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station/Test de tendance et détection de rupture appliqués aux séries de débit annuel du fleuve Yangtze à la station hydrologique de Yichang.
Hydrological Sciences Journal, 49(1), 99-112.
doi:10.1623/hysj.49.1.99.53998
Xu, M., Wang, G., Wang, Z., Hu, H., Singh, D.K., & Tian, S. (2022). Temporal and spatial hydrological variations of the Yellow River in the past 60 years.
Journal of Hydrology, 609, 127750.
doi:10.1016/j.jhydrol.2022.127750
Yang, T., Zhang, Q., Chen, Y.D., Tao, X., Xu, C. Y., & Chen, X. (2008). A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China.
Hydrological Processes: An International Journal, 22(18), 3829-3843.
doi:10.1002/hyp.6993