Adineh, V.R., Aghanajafi, C., Dehghan, G.H., & Jelvani, S. (2008). Optimization of the operational parameters in a fast axial flow CW CO2 laser using artificial neural networks and genetic algorithms. Optics and Laser Technology, 40(8), 1000-1007. doi:10.1016/j.optlastec.2008.03.003
Ahmadpari, H., Safavi Gerdini, M., & Ebrahimi, M. (2019). An appropriate method for estimating potential evapotranspiration in the absence of meteorological data. Journal of Land Management, 7(2), 223-231. doi:10.22092/lmj.2019.120559 [In Persian]
Allen, R.G., Raes, L.S., & Smith, M. (1998). Crop evapotranspiration guidelins for computing crop water requirements. FAO Irrigation and Drainge, NO. 56, FAO, Rome, Italy, 301 pages.
Ardiclioglu, M., Kisi, O., & Haktanin, T. (2007). Suspended sediment prediction by using two different feed-forward backpropagation algorithms. Canadian Journal of Civil Engineering, 34(1), 120-125.
Citakoglu, H., Cobaner, M., Haktanir, T., & Kisi, O. (2014). Estimation of monthly mean reference evapotranspiration in Turkey. Water Resources Management, 28(1), 99–113. doi:10.1007/s11269-013-0474-1
Dai, X., Shi, H., Li, Y., Ouyang, Z., & Huo, Z. (2009). Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes, 23, 442-450. doi:10.1002/hyp.7153
Dayhoff, J.E. (1990). Neural network principles. Prentice-Hall International, U.S.A.
Dingman, S.L. (1994). Physical Hydrology. Upper Saddle River, N.J. Prentice Hall, 89 pages.
Ebrahimipak, A., Tafteh, A., Egdarnejad, A. & Asadi Kapourchal, S. (2019). Determination of monthly evapotranspiration coefficients of winter wheat by different methods of estimating evapotranspiration and evaporation pan in Qazvin plain. Irrigation and Water Engineering, 32, 105-119. [In Persian]
Ghorbani, M., Shokri S., & Boromand Nasab, S. (2016). Investigating the performance of neural networks in estimating reference plant evaporation and transpiration (Case Study: Ahvaz Synoptic Station). Wetland Ecobiology, 8 (28), 23-34. [In Persian]
Haghighatjou, P., Muhammadzadeh Shahroudi, Z., & Mohammadrezapour, O. (2017). Comparison of gene expression programming (GEP) and neuro-fuzzy methods for estimation of pan evaporation (Case study: south Khorasan province). Water Soil Resource Conservation, 6(4), 107–117. [In Persian]
Haghi Zadeh, A., Ebrahimian, T., & Yarahmadi Y. (2019). Comparison of hybrid ANFIS-PSO model and experimental torque model in reference evaporation and transpiration estimation (Case study: Poldakhter-Lorestan). Ecohydrology, 6(3), 685-694. doi:10.22059/ije.2019.272281.1012 [In Persian]
Hoseini, M. (2015). Comparing the performance of artificial neural network and tree model in estimating daily reference evaporation and transpiration with minimum climatic data (Case study: cold and dry region of Shahrekord). M.Sc. Thesis, Shahrekord University. [In Persian]
Hozhabr, H., Moazed, H., & Shokri, S. (2014). Estimating reference evaporation and transpiration using experimental models, modeling it with artificial neural network and comparing them with lysimeter data in Kehriz station of Urmia. Irrigation and Water Engineering, 4(15), 13-25. [In Persian]
Kisi, O., & Ozturk, O. (2007). Adaptive neurofuzzy computing technique for evapotranspiration estimation. ASCE Journal of Irrigation and Drainage Engineering, 133, 368-379. doi:10.1061/(ASCE)0733-9437(2007)133:4(368)
Koochak Zadeh, M., & Bahmani, A. (2005). Evaluation of the performance of artificial neural networks in reducing the parameters required to estimate reference evaporation and transpiration. Journal of Agricultural Sciences; 11(4), 91-101. [In Persian]
Laaboudi, A., Mouhouche, B., & Draoui, B. (2012). Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. International Journal of Biometeorol, 56, 831–841. doi:10.1007/s00484-011-0485-7
Landeras, G., Ortiz-Barredo, A., & López, J.J. (2008). Comparison of artificial neural network models and empirical and semi-empirical equations for daily evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management, 95(5), 553-565. doi:10.1016/j.agwat.2007.12.011
Mohamadrezapour, O. (2017). Monthly forecast of potential evapotranspiration models using support vector machine (SVM), genetic programming and neural-fuzzy inference system. Irrigation Water Engineering, 7(3), 135–150.
Nouri, S., Fallahghalheri, Gh., & Sanaei Nezhad, H. (2013). Modeling of potential evapotranspiration by Artificial Neural Network from minimum climatic variables in Mashhad synoptic station. Journal of Water and Soil Conservation Research, 20(5), 163-178. dor:20.1001.1.23222069.1392.20.5.10.6 [In Persian]
Norman, J.M., Kustas, W.P., & Humes, K.S. (1995). Source approach forestimating soil and vegetation energy fluxes in observations of directionalradiometric surface temperature. Agricultural and Forest Meteorology, 77, 263-293. doi:10.1016/0168-1923(95)02265-Y
Rahimzadegan, R. (1991). Searching for a suitable method for estimating evaporation and transpiration in Isfahan region. Iranian Journal of Agricultural Sciences, 22(2), 1-10. [In Persian]
Sayadi, H., Olad Ghaffari, A., Faalian, A., & Sadrodini, A. (2009). Comparison of the performance of RBF and MLP neural networks in estimating reference plant evapotranspiration. Journal of Water and Soil Sciences, 1(19), 1-12. [In Persian]
Sayadi Shahraki, A., Naseri, A.A, Boroomand Nasab, S., & Soltani Mohammadi, A. (2020). Estimation of Evapotranspiration Using Empirical Models, modeling it with Artificial Neural Network and Their Comparison with Lysimeter Data (Case Study: Salman Farsi Agro-Industry CO). Nivar, 44(111), 146-156. doi:10.30467/nivar.2020.232521.1159 [In Persian]
Saremi, M., & Farhadi Bansouleh, B. (2015). Determining the effective parameters in estimating the evaporation and transpiration of the reference plant using artificial neural network (Case study: Lorestan province). Irrigation and Drainage Journal, 4(9), 614-623. [In Persian]