Adnan Khan, M., Stamm, J., & Haider, S.) 2021(. Assessment of soft computing techniques for the prediction of suspended sediment loads in rivers. Applied Science, 11, 82-90. doi:10.3390/app11188290
Ansari, H., & Davari, K. (2008). Classification of dry period using standard precipitation index in GIS environment. Geographical Research, 39(60), 98-108. [In Persian]
Asadi, M., & Fathzadeh, A. (2017). Investigating the effectiveness of computational intelligence-based models in river load estimation (case study: Gilan province). Range and Watershed Management, Journal of Natural Resources of Iran, 1(71), 45-60. doi:10.22059/jrwm.2018.222810.1083 [In Persian]
Bazuhair, S.A., Gohani, A., & Sen, Z. (1997). Determination of monthly wet and dry periods in Saudi Arabia. International Journal of Climatology, 17, 303-311.
Bonakdar, L., & Etemad Shahidi, A. (2011). Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Engineering, (38), 111-118.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. doi:10.1007/BF00058655
Doroudi, S., Sharafati, A., & Mohajeri, S.H. (2021). Estimation of daily suspended sediment load using a novel hybrid support vector regression model incorporated with observer-teacher-learner-based optimization method. Complexity, 5540284, 1-13.
Eshghi, P., Farzad Mehr, J., Dasturani, M.T., & Arabasadi, Z. (2015). The effectiveness of intelligent models in estimating the river suspended sediments (Case study: Babaaman Basin, Northern Khorasan). Journal of Watershed Management Research, 7(14), 88-95. [In Persian]
Khalighi, Sh., Sadeghi Sangehi, S.A., Osta, Kh., & Qavidel Rahimi, Y. (2009). The study of drought and wet year assessment models for stations in Mazandaran province. Iranian Journal of Range and Desert Research, 16(1), 44-54. [In Persian]
Kohestani, V.R., Hasanlorad, M., & Bazargan Lari, M. (2016). Prediction of the ultimate bearing capacity of surface foundations located on granular soils using the M5P tree model. Ferdowsi Civil Engineering, 2(27), 99-110. doi:10.22067/civil.v27i2.33915 [In Persian]
Malik, A., Kumar, A., & Piri, J. (2017). Daily suspended sediment concentration simulation using hydrological data of Pranhita River Basin, India. Computers and Electronics in Agriculture, 1(138), 20-28. doi:10.1016/j.compag.2017.04.005
Mirfalah Nasiri, S., Amiri, E., & Shadabi Bejand, M. (2019). Modeling Estimation of Suspended Sediment Rate in Pasikhan River Using Decision Tree Artificial Neural Network. Journal of Water and Soil Resources Conservation, 10(2), 31-42. dor:20.1001.1.22517480.1399.10.2.3.6 [In Persian]
Mohammadi, S. (2018). Simulation of suspended sediment load using artificial neural network, neural-fuzzy and sediment gauge curve methods in Halil-Roud watershed. Scientific-Research Journal of Watershed Engineering and Management, 2(11), 452-466. doi:10.22092/ijwmse.2017.108140.1219 [In Persian]
Mostafazadeh, R., & Zabihi, M. (2016). Comparison of SPI, SPEI indices in meteorological drought assessment using R programming (study area: Kurdistan province). Journal of Earth and Space Physics, 42, 633-643. doi:10.22059/jesphys.2016.57881 [In Persian]
Nourani, V., Gokcekus , H., & Gelete, G. (2020). Estimation of suspended sediment load using artificial intelligence-based ensemble model. Complexity, 1-19. doi:10.1155/2021/6633760
Pal, M., & Deswal, S. (2010). Modelling pile capacity using Gaussian process regression. Computers and Geotechnics, 37, 942-947.
Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217-222. doi:10.1080/01431160412331269698
Prasad, A.M., Iverson, L.R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181-199. doi:10.1007/s10021-005-0054-1
Qobadian, R., & Shokri, H. (2018). Numerical investigation of factors affecting the distribution of unbalanced sediment concentration in natural rivers (case study: Qarasu River, Kermanshah). Water and Soil (Agricultural Sciences and Industries), 2(34), 241-253. doi:10.22067/jsw.v34i2.76326 [In Persian]
Quinlan, J.R. (1992). Learning with continuous classes. In Proceedings of the 5th Australian joint Conference on Artificial Intelligence. Hobart: Singapore.
Rahul, A.K., Shivhare, N., Kumar, S., Dwivedi, S.B., & Dikshit, P.K.S. (2021). Modelling of daily suspended sediment concentration using FFBPNN and SVM algorithms. Journal of Soft Computing in Civil Engineering, 5(2),120-134. doi:10.22115/SCCE.2021.283137.1305
Sattari, M., Rezazade Jodi, A., Safdari, F., & Kahramanzadeh, F. (2015). Performance evaluation of M5 tree model and support vector regression methods in river suspended sediment modeling. Journal of Water and Soil Resources Protection, 6(1), 109-124. [In Persian]
Sepahvand, A., & Azizi Najafkali, Z. (2019). Suspended sediment modeling using Gaussian process and multi-layer perceptron models. 15th National conference on Watershed Management Sciences and Engineering of Iran, Sari, Iran.
Sepahvand, A., Nazari Samani, A.A., Mohammadian, H., Ahmadi, H., & Feiz Nia, S. (2020). Seasonal variation of the solute and determine the solubility of limestone formations. Iranian Journal of Watershed Management Science and Engineering, 14(48), 21-32. dor:20.1001.1.20089554.1399.14.48.4.1
Sepahvand, A., Singh, B., Sihag, P., Nazari, A., Hasan Ahmadi, S., & Fiz Nia, S. (2019). Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH Journal of Hydraulic Engineering, 27, 124-135. doi:10.1080/09715010.2019.1595185
Shojaeezadeh, S.A., Nikoo, M.R., McNamara, J.P., AghaKouchak, A., & Sadegh, M. (2018). Stochastic modeling of suspended sediment load in alluvial rivers. Advances in Water Resources, 119, 188-196. doi:10.1016/j.advwatres.2018.06.006
Smakhtin V.U. (2001). Low-flow hydrology: a review. Journal of Hydrology, (240), 147-186. doi:10.1016/S0022-1694(00)00340-1
Soleimani, L., Derikund, B., & Sepehvand, A. (2021). Modelling of infiltration rate in different soil textures using soft computing techniques in Kashkan Watershed, Lorestan Province. Journal of Watershed Management Research, 35(4), 1-150. doi:10.22092/wmrj.2022.358213.1461 [In Persian]
Wang, Y., & Witten, I.H. (1997). Inducing model trees for continuous classes. Proceedings of the Ninth European Conference on Machine Learning, Prague, Czech Republic: Springer.
Yang, D., Zhang, X., Pan, R., Wang, Y., & Chen, Z. (2018). A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. Journal of Power Sources, 384, 387-395. doi:10.1016/j.jpowsour.2018.03.015