Al Masaodi, J.O., & Al-Zubaidi, H.A.M. (2021). Spatial-temporal changes of land surface temperature and land cover over Babylon Governorate, Iraq. Materials Today: Proceedings, 46(9), 1-10.
Anjomshoa, F., Morovati, M., Tazeh, M., & Bahadori Amjaz, F. (2021). Investigating the Relationship between Thermal Islands and Green Space Areas and Detecting its Changes (Case Study: Kerman City). Geography and Environmental Sustainability, 11(4), 83-106 (in Persian).
Ansari, M., & Norouzi, A. (2021). Investigation of land surface temperature trends relative to land use changes in dust sources of South East Ahwaz Using Landsat 8 Satellite Data. Iranian Journal of Soil and Water Research, 52(7), 1825-1840 (in Persian).
Arabi Ali Abad, F., Zare, M., Ghafarian Malamiri, H. (2021). Effect of land cover changes on land surface temperature in Yazd plain, Iran. The Journal of Geographical Research on Desert Areas, 9(2), 43-66 (in Persian).
Asaf Abir, F., & Saha, R. (2021). Assessment of land surface temperature and land cover variability during winter: A spatio-temporal analysis of Pabna municipality in Bangladesh. Environmental Challenges, 4, 1-12.
Asghari Sarasekanrood, S., & Asadi, B. (2021). Analysis of land use changes and their effects on the creation of thermal islands in Isfahan City. Geographical Research on Desert Areas, 8(2), 217-246 (in Persian).
Asghari Saraskanroud, S., & Emami H. (2019). Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image. Geographical Sciences, 19(53), 195-215 (in Persian).
Asghari Saraskanroud, S., Faal Naziri, M., & Ghale, E. (2019). The Relationship of Different Land Uses with Land Surface Temperature based on Spatial Correlation (Moran) Analysis Using Landsat 8 Satellite Images (OLI) (Case Study: Ardebil City). Geography and Environmental Planning, 30(1), 93-110 (in Persian).
Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Sciences, 22(2), 203-218.
Das, N., Mondal, P., Sutradhar, S., & Ghosh, R. (2021). Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivision. The Egyptian Journal of Remote Sensing and Space Sciences, 24(1), 131-149.
Dashtakian, K., & Dehghani, M.A. (2008). Land surface temperature analysis of desert area in relation with vegetation and urban development using RS and GIS (Case study: Yazd-Ashkezar area. Pajouhesh va Sazandegi, 20(4), 169-179 (in Persian).
Entezari, A., Amir Ahmadi, A., Aliabadi, K., Khosravian, M., & Ebrahimi, M. (2016). Monitoring land surface temperature and evaluating change detection land use (Case studu: Parishan lake basin). Hydrogeomorpholohy, 3(8), 113-139 (in Persian).
Fatemi, S.B., & Rezaei, Y. (2018). Principles of Remote Sensing. Azade Press, Tehran (in Persian).
Feizizadeh, B., Didehban, K., & Gholamnia, K. (2016). Extraction of land surface temperature (LST) based on Landsat satellite images and split window algorithm (study area: Mahabad catchment). Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98), 171-181 (in Persian).
Hadipour, M., Darabi, H., & Davudirad, A. (2020). Investigating urban heat islands (UHI) and the irrelation with air pollution, NDVI and NDBI in Arak using RS techniques. Scientific- Research Quarterly of Geographical Data (SEPEHR), 28(112), 249-264 (in Persian).
Hoseinzadeh, A., Kashki, A., Karami, M., & Javidi Sabaghian, R. (2021). Estimating land surface temperature changes using Landsat satellite imagery and three algorithms, mono window, single channel and Planck, Case study of Bojnourd Plain. Environmental Researches, 12(23), 13-26 (in Persian).
Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.
Jimenez-Muñoz, J.C., & Sobrino, J.A. (2010). Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geoscience and Remote Sensing Letters, 5, 806–809.
Jouybari, Y., Moghaddam, M., Akhoondzadeh, M. R., & Saradjian, M.R. (2015). A split-window algorithm for estimating LST from Landsat-8 satellite images. Journal of Geomatics Science and Technology, 5(1), 215-226 (in Persian).
Kakehmami, A., Ghorbani, A., Asghari Sarasekanrood, S., Ghale, E., & Ghafari, S. (2020). Study of the relationship between land use and vegetation changes with the land surface temperature in Namin County. Journal of RS and GIS for Natural Resources, 11(2), 27-48 (in Persian).
Karimi Firozjaei, M., Kiavarz Mogaddam, M., & Alavi Panah, S.K. (2017). Monitoring and predicting spatial-temporal changes heat island in Babol city due to urban sprawl and land use changes. Journal of Geospatial Information Technolohy, 5(3), 123-151 (in Persian).
Kazemi, M., Nafarzadegan, A., & Mohammadi, F. (2019). Studying changes in heat islands and land uses of the Minab city using the random forest classification approach and spatial autocorrelation analysis. Journal of RS and GIS for Natural Resources, 10(4), 38-56 (in Persian).
Khosravi, Y., Heidari, M.A., & Tavakoli, A. (2017). Analyzing of the relationship between land surface temperature; temporal changes and spatial pattern of land use changes. Journal of Spatial Planning, 21(3), 119-144 (in Persian).
Koushesh Vatan, M., & Asghari Zamani, A. (2021). Study of land surface temperature concerning land-use in Tabriz city using the Landsat 8 data. Journal of Economic geography research, 2(3), 49-58 (in Persian).
Kumari, M., Sarma, K., & Sharma, R. (2019). Using Moran's I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 15, 1-6.
Liu, L., & Yuanzhi, Z. (2011). Urban heat island analysis using the landsat tm data and aster data: a case study in hong kong. Remote Sensing, (3), 1535-1552.
Madadi, A., Ghale, E., Ebadi, E., Nezafat, B. (2022). Investigating the relationship between different uses with Earth's surface temperature based on spatial autocorrelation analysis using Landsat satellite image data (Case study: Kosar county. Geographic Space, 22(77), 99-119 (in Persian).
Mansourmoghaddam, M., Rousta, I., Zamani, M., Mokhtari, M., Karimi Firozjaei, M., & Alavipanah, S. (2021). Study and prediction of land surface temperature changes of Yazd city: assessing the proximity and changes of land cover. Journal of RS and GIS for Natural Resources, 12(4), 1-27 (in Persian).
mohammadpour, A., Alijani, B., Akbary, M., & Zeaiean Firouzabadi, P. (2021). Spatial and temporal analysis of the thermal islands of Gorgan urban areas. Geographical Planning of Space, 10(38), 157-172 (in Persian).
Njoku, E.A., & Tenenbaum, D.E. (2020). Using Moran's I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 27, 1-18.
Pirnazar, M., Rostaii, S., Feyzizadeh, B., & Raisi, F. (2018). Calculating the earth surface temperature and its relation to urban land cover classes by Landsat 8 data (case study: Tehran city). Geographical Planning of Space, 8(29), 227-240 (in Persian).
Rahdari, V., Soffianian, A., Khajaldin., S.J., & Maleki Najafabadi, S. (2014). Identification of satellite image ability for vegetation cover crown percentage mapping in arid and semi arid region (case study: Mouteh wild life sanctuary). Journal of environmental Science and Technology, 15(4), 43-54 (in Persian).
Rani, S., & Mal, S. (2022). Trends in land surface temperature and its drivers over the High Mountain Asia. The Egyptian Journal of Remote Sensing and Space Sciences, 25, 717-729.
Rashid, N., Mostahidul Alam, J.A.M., Arif Chowdhury, M., & Ul Islam, S.L. (2022). Impact of landuse change and urbanization on urban heat island effect in Narayanganj city, Bangladesh: A remote sensing-based estimation. Environmental Challenges, 8, 1-11.
Rogan, J., Ziemer, M., Martin, D., Ratick, S., Cuba, N., & DeLauer, V. (2013). The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using landsat thematic mapper thermal data. Applied Geography Journal, 45, 49-57.
Rongali, G., Keshari, A.K., Gosain, A.K., & Khosa, R. (2018). Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis, 2(14), 1-19.
Sekertekin, A., & Zadbagher, E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators, 122, 1-11.
Shabani, M., Darvishan, S., & Solaimani, K. (2019). Investigating the effects of land use change on spatiotemporal patterns of land surface temperature and thermal islands (Case study: Saqqez County). Geography and Environmental Planning, 30(1), 37-54 (in Persian).
Sobrino, J., & Jimenez-Munoz, J. (2014). Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future mission. Remote Sensing Environment, 148, 158–167.
Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Umar, U.M., & Kumar, J.S. (2014). Spatial and temporal changes of urban heat island in Kano metropolis, Nigeria. International Journal of Research in Engineering Science and Technology, 1(2), 20-28.
Worku, G., Teferi, E., & Bantider, A. (2021). Assessing the effects of vegetation change on urban land surface temperature using remote sensing data: The case of Addis Ababa city, Ethiopia. Remote Sensing Applications: Society and Environment, 22, 1-14.