Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Amini, A., Porhemmat, J., & Sedri, M.H. (2020(. Investigating the physical and economic efficiency of water in major crops in the Talvar Watershed, Kurdistan, Iran. Watershed Engineering and Management. 12(2), 481-491 (in Persian).
Ashktorab, N., & Zibaei, M. (2022). Future virtual water flows under climate and population change scenarios: focusing on its determinants. Journal of Water and Climate Change, 13(1), 96-112.
Bagestani, A., & Mehrabadi Beshrabadi, H. (2016). The concept of virtual water and its application in determining the trade pattern of agricultural products of Iran. The 9th National Conference on Irrigation and Evaporation Reduction, Kerman, Iran (in Persian).
Baghbanyan, M., Emamverdi, GH., Ghaderzadeh, H., Damankeshideh, M., & Aminrashti, N. (2020). A survey on virtual water and sustainable productivity indices of agricultural water in major agricultural crops (A case of Saqqez City, Kurdistan Province). Iranian Journal of Irrigation and Drainage, 14(3), 1046-1054 (in Persian).
Bazrafshan, E., Malekinezhad, H., Hosseini, S.Z., Barzgari, F. (2019). Investigation of water need based on changing irrigation patterns and its effect on the water balance of Yazd-Ardakan Plain, Iran. The Journal of Arid Biome, 9(1), 101-111 (in Persian).
Deng, G., Lu, F., Wu, L., & Xu, C. (2021). Social network analysis of virtual water trade among major countries in the world. Science of The Total Environment, 753, 142043.
Du, Y., Fang, K., Zhao, D., Liu, Q., Xu, Z., & Peng, J. (2022). How far are we from possible ideal virtual water transfer? Evidence from assessing vulnerability of global virtual water trade. Science of the Total Environment, 828, 154493.
Hekmatnia, M., Hosseini, S.M., & Safdari, M. (2020). Water Resource Management of the Agricultural Sector in Sistan and Baluchestan Province: a Virtual Water Perspective. Journal of Irrigation and Water Engineering, 11(1), 137-149 (in Persian).
Information and Communication Technology Center of the Ministry of Agricultural Jihad, (2022). The status of crops in West Azerbaijan province and Poldasht City, Tehran, Iran (in Persian).
Khoramivafa, M., Nouri, M., Mondani, F., Veisi, H. (2017), Evaluation of virtual water, water productivity and ecological footprint in Wheat and Maize Farms in West of Iran: A case study of Kouzaran Region, Kermanshah Province. Journal of Water and Sustainable Development, 7(2), 19-26 (in Persian).
Long, A., Deng, X., & Yu, J. (2022). Understanding of regional trade and virtual water flows: The case study of Arid Inland River Basin in Northwestern China. In: Ren, J. (eds) Advances of Footprint Family for Sustainable Energy and Industrial Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-76441-8_6.
Mircholi, F., Soltani Kopaee, S., & Faramarzi, M. (2016). Assessing of virtual water trade and water footprint of some agricultural crops in Iran. Iranian Water Research Journal, 10(1), 49-58 (in Persian).
Nishad, S.N., & Kumar, N. (2022). Virtual water trade and its implications on water sustainability. Water Supply, 22(2), 1704-1715.
Pouran, R., & Raghfar, H. (2021). Investigation of crop cultivation pattern of Semnan and Ilam provinces by emphasizing the role of virtual water in water productivity. The Journal of Water and Sustainable Development, 8(1), 97-106 (in Persian).
Pouran, R., Raghfar, H., Ghasemi, A.R., & Bazazan, F. (2017). Evaluating the economic value of virtual water with maximizing productivity of Irrigation water. Quarterly Journal of Applied Economics Studies, 6(21), 189-212 (in Persian).
Rastegaripoor, F., Salari, A., & Azizzadeh, F. (2021). Determination of virtual water indices and ecological footprint of sugar beet water in villages of Torbat Heydarieh city. Rural Development Strategies, 30, 233-243 (in Persian).
Smith, M., Allen, R., Monteith, J.L., Perrier, A., & Segeren, A. (1992). Report on the expert consultation on revision of FAO methodologies for crop water requirements. FAO Land and Water Development Division, FAO, Rome (Italy), 129 pages.
Sun, X., Wang, W., Qu, S., Li, W., Zhao, W., & Meng, Y. (2022). Quantitative analyzes of virtual water net exports under the impacts of natural changes and human activities in the last 20 years in Shandong Province, China. Water Supply, 22(2), 1521-1532.
Xia, W., Chen, X., Song, C., & Pérez-Carrera, A. (2022). Driving factors of virtual water in international grain trade: A study for belt and road countries. Agricultural Water Management, 262, 107441.
Zamani, O., Mortazavi, S., & Belali, H. (2014). Economical Water Productivity of Agricultural Products in Bahar Plain, Hamadan. Water Research in Agriculture, 28(1), 51-61 (in Persian).
Zhong, Z., Chen, Z., & Deng, X. (2022). Dynamic change of inter-regional virtual water transfers in China: Driving factors and economic benefits. Water Resources and Economics, 100203.
Zhuo, L., L, M., Zhang, G., Mekonnen, M.M., Hoekstra, A.Y., Wada, Y., & Wu, P. (2022). Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. Journal of Hydrology, 608, 127674.