Arabkhedri, M. (2014). A review on major water erosion factors in Iran. Land Management, 2(1), 17-26 (in Persian).
Arabkhedri, M., Lai, F.S., Noor-Akma, I., & Mohamad-Roslan, M.K. (2010). Effect of adaptive cluster sampling design on accuracy of sediment rating curve estimation. Journal of Hydrologic Engineering, 15(2), 142-151.
Asadi Nalivan, O., Mohseni Saravi, M., Sour, A., Dastranj, A., & Taei, S. (2013). Determine the most appropriate experimental method to estimate the SDR using EPM and physical properties basin; case study Watershed Ghurchay, Golestan province. Irrigation and Water Engineering, 3(10), 19-28 (in Persian).
Barrena-González, J., Rodrigo-Comino, J., Gyasi-Agyei, Y., Pulido Fernandez, M., & Cerdá, A. (2020). Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to estimate soil mobilisation rates. Land, (9)3, 93-103.
Bayat, R., & Moradi, Sh. (2014). Review of research conducted on the sediment delivery ratio. Journal of Extension and Development of Watershed Managment, 2(5), 27-36 (in Persian).
Ewert, M., Su, Y., & Zhang, H. (2018). Comparison of two RUSLE models at the hillslope scale in experimental plots in Haiyuan, Ningxia, China. Annals of Valahia University of Targoviste, Geographical, 18(2), 153-160.
Fazli, S., & Noor, H. (2013). Storm-wise sediment yield prediction using hillslope erosion model in semi-arid abundant lands. Soil and Water Research, 8, 42-48.
Fu, X., Jiang, L., Wu, B., Hu, C., Wang, G., & Fei, X. (2010). Sediment delivery ratio and its uncertainties on flood event scale: Quantification for the Lower Yellow River. Science China Technological Sciences, 53, 854-862.
Gholami, L., Sadeghi, S.H.R., & Khaledi-darvishan, A. (2010). Modeling the estimation of sediment delivery ratio in Chehl Gezi watershed based on climatic and hydrological characteristics. Agricultural Sciences and Natural Resources, 16(2), 253-262.
Jacobsen, T. (2009). Some aspects of reservoir sedimentation. Workshop on Reservoir Sedimentation Control. Regional Centre on Urban Flood Management, Karaj, Iran.
Karimi, Z., Sadoddin, A., & Sheikh, V. (2022). Effects of watershed management practices on the quadric services of Chehel-Chai Watershed, Golestan Province. Water and Soil Management and Modelling, 10.22098/mmws.2022.10523.1087 (in Persian).
Kinnell, P.I. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of models: a review. Journal of Hydrology, 385, 384-397.
Khorsand, M., Khaledi Darvishan, A., & Gholamalifard, M. (2016). Comparison between estimated annual soil lossusing RUSLE model with data from the erosion pins and plots in Khamsan representative watershed. Iranian journal of Ecohydrology, 3(4), 669-680 (in Persian).
Komaki, Ch., Ahmadi, H., Mombeni, M., Yousefi, S., & Mostafavi, N. (2019). Comparison of Automatic Extraction of Sediment Delivery of Watershed and Traditional Method in Geographic Information System (Case Study: Yekechenar Watershed–Golestan Province). Journal of Watershed Management Research, 9(18), 260-270 (in Persian).
Koohdarzi Moghaddam, M., Taghipour, S., & Erfanipour Ghasemi, V. (2022). Effectiveness of watershed management measures on the soil erosion and sediment yield reduction (Case study: Doholkooh Watershed, South Khorasan Province). Water and Soil Management and Modelling, 10.22098/mmws.2022.10282.1080 (in Persian).
Mirakhorlo, M.S., & Rahimzadegan, M. (2020). Evaluating estimated sediment delivery by Revised Universal Soil Loss Equation (RUSLE) and Sediment Delivery Distributed (SEDD) in the Talar Watershed, Iran. Frontiers of Earth Science, 1-13.
Noor, H., Bagherian Kalat, A., & Abbasi, A. (2020). Evaluation of sediment yield under open grazing and exclosure micro-watersheds, case study: Sangnaeh area of Kalat. Watershed Engineering and Management, 12(2), 505-513 (in Persian).
Pimental, D., Harvary, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shipritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental end economic costs if soil erosion and conservation benefit. Science, 267, 1117-1123.
Refahi, H.G. (2001). Water erosion and its control. Tehran University Publisher, 625 pages (in Persian).
Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., & Yoder D.C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703. US Government Printing Office, Washington, DC.
Sadeghi, S.H.R., Gholami, L., Khaledi Darvishan, A., & Saeidi, P. (2014). A review of the application of the MUSLE model worldwide. Hydrological Sciences Journal, 59(2), 365-375.
Saeediyan, H., & Moradi, H. (2022). Comparing of the runoff and sediment of different land uses in Gachsaran and Aghajari formations under rain simulation. Water and Soil Management and Modelling, 2(2), 55-68 (in Persian).
Safari, A., . Kavyan, A., Mirzaei, H., & Farhoodi, M. (2015). Comparison and evaluation of different methods to estimate sediment delivery ratio in three different climates of Iran. Geography and Environmental Planning, 26(3), 255-274 (in Persian).
Santos, J.C.N., Andrade, E.M., Medeiros, P.H.A., Palácio, H.A.Q., & Araújo Neto, J.R. (2017). Sediment delivery ratio in a small semi-arid watershed under conditions of low connectivity. Revista Ciência Agronômica, 48(1), 49-58.
Walling, D.E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209-237.
Walling, D.E. (1994). Measuring sediment yield from river basins. Pp. 39-83. In: R. Lal (ed.), Soil Erosion Research Methods. 2nd edition, Soil and Water Conservation Society Publications, USA.
Williams, J.R. (1977). Sediment delivery ratios determined with sediment and runoff models. IAHS Pubicationl, 122, 168-179.