Aguilar, E., Auer, I., Brunet, M., Peterson. T.C., & Wieringa, J. (2003). Guidelines on climate metadata and homogenization. World Meteorological Organization Geneva, 52.
Alexandersson, H., Moberg, A. (1997). Homogenization of Swedish Temperature Data Part I: Homogeneity Test for Linear Trends. International Journal of Climatology, 17, 25–34.
Asakereh, H. (2004). Statistical analysis on the average annual temperature change in Zanjan city during recent decades. Nivar, 52, 9-30 (in Persian).
Asakereh, H. (2009). ARIMA Modeling for tabriz city annual temperature. Geographical Research, 24(2), 3-24 (in Persian).
Asakereh, H., & Kheradmand Nia, M. (2002). SARIMA modeling for average monthly temperatures, a case study of average monthly temperature modeling in Jask. Nivar, 46, 41-54 (in Persian).
Belyani, Y., Fazelnia, Gh., & Bayat, A. (2012) . A study and prediction of annuel temperature in Shiraz using ARIMA model. Geographical Space, 12(38), 127-144 (in Persian).
Chawsheen, T.A., Broom, M. (2017). Seasonal time-series modeling and forecasting of monthly mean temperature for decision making in the Kurdistan Region of Iraq. Statical and Theoryetical Practice, 11, 604–633.
Darvand, S., Eskandari Dameneh, H., Eskandari Damaneh, H., & Khosravi, H. (2021). Prediction of the change trend of temperature and rainfall in the future period and its impact on desertification. Water and Soil Management and Modeling, 1(1), 53-66 (in Persian).
Ghajarnia, N., Liaghat, A., & Daneshkar Arasteh, P. (2014). Verifying precipitation data of tamab and meteorology institute in urmia basin. Water and Soil Resources Conservation, 4(1), 91-109 (in Persian).
Grubbs, F.E. (1950). Sample criteria for testing outlying observations. Annals of Mathematical Statistics, 21(1), 27-58.
Hair, J.F., R.E. Andersen, R.L. Tatham W.C., & Black, W. (1998), Multivariate data analysis, Rentice Hall, Upper Saddle River. New Jersey Press, 520.
Jahanbakhsh Asl, S., & Torabi, S. (2004). Review and prediction of temperature and precipitation in Iran. Geographical Research, 19(3), 104-125 (in Persian).
Kang, H., & Yusof. F. (2012). Homogeneity tests on daily rainfall series in Peninsula Malaysia. International Journal of Contemporary Mathematical Sciences, 7(1), 9-22.
Li, M., Shouwen Ji, S., & Liu, G. (2018). Forecasting of Chinese E-commerce sales: An empirical comparison of ARIMA, nonlinear autoregressive neural network, and a combined ARIMA-NARNN Model. Mathematical Problems in Engineering, 6924960, 1024-1038.
Masoudian, S. (2004). Temperature trends in iran during the last half century. Geography and Development, 2(3), 89-106 (in Persian).
Masoumpour Samakosh, J., Jalilian, A., & Yari, E. (2017). The analysis of seasonal precipitation time series in Iran. Physical Geography Research Quarterly, 49(3), 457-475 (in Persian).
Nobre, F., Monteiro, A., Telles, P., & Williamson, G. (2001). Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology. Statistics in Medicine, 20(20), 3051–69.
Panagoulia, D., & Vlahogianni, E.I. (2014). Nonlinear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates. Hydrological Processes, 28(4), 2281-2292.
Peterson, T. (1998). Homogeneity adjustments of in situ atmospheric Climate data: A review. International Journal of Climatology, 18, 1493–1517.
Rahimiani Iranshahi, H., Moradi, H.R., & Jalili, Kh. (2022). Trend of precipitation and temperature changes at different time scales in the Karkheh Watershed. Water and Soil Management and Modeling, 2(2), 1-12 (in Persian).
Raziei, T., Saghafian, B., Paulo A.A., Pereira S.L., & Bordi, I. (2009). Spatial pattern and temporal variability of drought in western Iran. Water Resources Management, 23(3), 439-455.
Sen, Z. (1998). Small sample estimation of the variance of time averages in climate time series. International Journal of Climatology, 18, 1725-1732.
Shabani, B., Mousavi Baygi, M., Jabari Noghabi, M., & Ghareman, B. (2013). Modeling and prediction of monthly max & min temperatures of mashhad plain using time series models. Water and Soil, 27(5), 896-906 (in Persian).
Villarini, G., Smith, J.A., Napolitano, F. (2010). Nonstationary modeling of a long record of rainfall and temperature over Rome. Water Resources, 33(10), 1256–1267.
Wijngaard, J.B., Klein Tank, A.M.G., & Konnen, G.P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23(6), 679-692.
Yoon, D., Cha, D.H., Lee, M.I., Min, H., Jun, S.Y., & Choi, Y. (2021). Comparison of regional climate model performances for different types of heat waves over South Korea. International Journal of Climatology, 34, 2157–2174.
Yu, X., Shi, S., & Xu, L.(2021). A spatial–temporal graph attention network approach for air temperature forecasting. Applied Soft Computing, 113, 10788.