Al-Mukhtar, M., & Qasim, M. (2019). Future predictions of precipitation and temperature in Iraq using the statistical downscaling model. Arabian Geosciences, 12(2), 25.
Fawzy, S., I. Osman, A., Doran, J., & W. Rooney, D. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069–2094.
Gleick, P.H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329–344.
Hemati, L., & Miryaghoubzadeh, M. (2021). Forecasting of climate variables in future periods based on HadCM3 Data using statistical downscaling model (SDSM) in Agh-Chay Basin (West Azarbayjan). Journal of Watershed Management Research, 12(23), 95–107.
Hewitson, B.C., & Crane, R.G. (1992). Large‐scale atmospheric controls on local precipitation in tropical Mexico. Geophysical Research Letters, 19(18), 1835–1838.
Hooshmand, D.A., & Khordadi, M.J. (2014). Investigation of uncertainty of AOGCM models and diffusion scenarios in estimating climatic parameters (Case study: Mashhad Synoptic Station). Geogarphy and Envionmental Hazards, 3(3), 77-92 (in Persian).
Hosseini, S.H., Ghorbani, M., & Massah Bavani, A. (2015). Modeling rainfall-runoff in climate change to predict future flows of Sufi Chai watershed. Journal of Watershed Management Research, (11)6, 1-14 (in Persian).
Houshyar, M., Sobhani, B., & Hosseini, S.A. (2018). Future Projection of maximum temperature in Urmia through downscaling output of Canesm2 Model. Geography and Planning, 22(63), 305-325 (in Persian).
IPCC, (2022). Sixth Assessment Report of the Intergovermental Panel on Climate Change.
IPCC, (2007). Aviation and the Global Atmosphere. AR4 Climate Change 2007.
Jahangir, M.H., Amrai, N., & Norozi, E. (2020). Predicting variables climate, temperature and precipitation by multiple linear the model SDSM (Case study: Tehran Synoptic Station). Journal of Watershed Management Research, 11(21), 303-311 (in Persian).
Jahangir, M.H., Norozi, E., & Yarahmadi, Y. (2019). Investigation of Climate Parameters’ Changes in Borujerd City in Next 20 Years through the Using HADCM3 Model. Iranian Jornal of Ecohydrology, 5(4), 1345-1353 (in Persian).
Khan, M.S., Coulibaly, P., & Dibike, Y. (2006). Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319(1–4), 357–382.
Lin, J.Y., Cheng, C.T., & Chau, K.W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599–612.
Lotfi, M., Kamali, G., Mashkooti, A.H., & Varshavian, V. (2021). Predicting maximum temperatures using global climate models under RCP scenarios and microscaling LARS-WG and SDSM models in the west of the country. Quarterly Jurnal of Physical Geography, 14, 115-130 (in Persian).
Munawar, S., Tahir, M.N., & Baig, M.H.A. (2022). Twenty-first century hydrologic and climatic changes over the scarcely gauged Jhelum river basin of Himalayan region using SDSM and RCPs. Environmental Science and Pollution Research, 29(8), 11196–11208.
Ravan, W., Nazim al-Sadat, S.M.J. (2011). The projected fluctuations in temperature and precipitation over the central parts of the Province of Fars for the 2011-2040 period using the Echam5 Model. Water Resources Engineering, 4(10), 51-62 (in Persian).
Samadi, Z., Masahbavani, A., & Mahdavi, M. (2007). Study of the effect of small regression scaling methods on river flood regime. Final report of technical workshop on the effects of climate change on water resources management, National Committee for Irrigation and Drainage, 18 pages (in Persian).
Sanikhani, H., Dinpajoh, Y., Zamanzadeh Ghavidel, S., & Solati, B. (2014). A study on the impact of climate change on the runoff of the Ajichai basin in East Azerbaijan using the data of general circulation models of the atmosphere (GCMS) and its microscale by LARS-WG model. Water and Soil, 27(6), 1225-1234 (in Persian).
Semenov, M.A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41(1), 1–14.
Sobhani, B., Eslahi, M., & Babaeian, I. (2016). Efficiency of Statistical Downscaling Models of SDSM and LARS-WG in the Simulation of Meteorological Parameters in Lake Urmia Basin. Physical Geography Research Quarterly, 47(4), 499-516 (in Persian).
Thuiller, W. (2007). Climate change and the ecologist. Nature, 448(7153), 550–552.
Tian, Y., Xu, Y.P., Booij, M.J., & Cao, L. (2016). Impact assessment of multiple uncertainty sources on high flows under climate change. Hydrology Research, 47(1), 61–74.
Vergni, L., & Todisco, F. (2011). Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy. Agricultural and Forest Meteorology, 151(3), 301–313.
Wilby, R.L., Dawson, C.W., & Barrow, E.M. (2002). SDM- A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145–157.
Wilby, R.L., & Dawson, C.W. (2007). SDSM 4.2-A Decision Support Tool for the Assessment of Regional Climate Change Impacts, Version 4.2 User Manual. Lancaster University, Lancaster/Environment Agency of England and Wales, Lancaster, 1-94.
Yang, N., Men, B.H., & Lin, C.K. (2011). Impact analysis of climate change on water resources. Procedia Engineering, 24, 643–648.