Afrasiabi, F., Khodaverdiloo, H., & Asadzadeh, F. (2017). Characterizing the error structure of selected soil particle size distribution models. Journal of Water and Soil, 31(4), 1135-1147 (in Persian).
Asadzadeh, F., Jalalzadeh, S., & Samadi, A. (2017). Comparison of the physical and chemical properties of the bed and suspended sediments of the Roze-Chay River. Journal of Water and Soil Conservation, 24(2), 273-288 (in Persian).
Asadzadeh, F. (2018). Evaluation of prediction in some particle size distribution models for river sediments. Iranian Journal of Soil Research, 31(4), 587-599 (in Persian).
Asghari Sereskanrood, S. (2005). Analyzing the effects of gravel and sand mining on the morphology of Grango River (between Sahand Dam to Khorasanak village). Hydrogeomorphology, 1, 21-39 (in Persian).
Boadu, F.K. (2000). Hydraulic conductivity of soils from grain-size distribution: new models. Journal of Geotechnical and Geo-environmental Engineering, 126(8), 739-746.
Botula, Y.D., Cornelis, W.M., Baert, G., Mafuka, P. & Van Ranst, E. (2013). Particle size distribution models for soils of the humid tropics. Journal of Soils and Sediments, 13(4), 686-698.
Buchan, G.D., Grewal, K.S., & Robson, A.B. (1993). Improved models of particle- size distribution: An illustration of model comparison techniques. Soil Science Society of America Journal, 57, 901- 908.
Cronican, A.E., & Gribb, M.M. (2004). Hydraulic conductivity prediction for sandy soils. Groundwater, 42(3), 459-464.
Esmaeelnejad, L., Siavashi, F., Seyedmohammadi, J., & Shabanpour, M. (2016). The best mathematical models describing particle size distribution of soils. Modeling Earth Systems and Environment, 2(4), 1-11.
Fang, Z., Patterson, B.R., & Turner Jr, M.E. (1993). Modeling particle size distributions by the Weibull distribution function. Materials Characterization, 31(3), 177-182.
Flemming, B.W. (2007). The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: implications for sediment trend analysis. Sedimentary Geology, 202(3), 425-435.
Fredlund, M.D., Wilson, G.W., & Fredlund, D.G. (2002). Use of the grain-size distribution for estimation of the soil-water characteristic curve. Canadian Geotechnical Journal, 39(5), 1103-1117.
Haverkamp, R.T., & Parlange, J.Y. (1986). Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter1. Soil Sciences, 142(6), 325-339.
Hwang, S.I., Lee, K.P., Lee, D.S., & Powers, S.E. (2002). Models for estimating soil particle-size distributions. Soil Science Society of America Journal, 66(4), 1143-1150.
Hwang, S.I. (2004). Effect of texture on the performance of soil particle-size distribution models. Geoderma, 123(3), 363-371.
Krause, P., Boyle, D.P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97.
Kondolf, G.M. (1994). Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning, 28, 225-243.
Mahmoodi, Z., Bahremand, A.R., Abdollahi, Kh., Sadoddin, A., Kuhestani, Sh., & Komaki, Ch.B. (2020). Investigation of temporal and spatial variations of water balance components and hydrograph separation of Arazkouse watershed through groundwater recharge modeling using WetSpass model. Journal of Water and Soil Conservation, 27(1), 27-47 (in Persian).
Rastgo, M., Bayat, H., & Ebrahimi, E. (2014). The effect of textural groups on the fitting capability of soil particle size distribution curve models. Journal of Water and Soil, 28(1), 111-126 (in Persian).
Rezaee Abajelu, E., Behmanesh, J., Mohammad Nejhad, B., Zeynalzadeh, K., & Habibzadeh Azar, B. (2013). Evaluation of pedotransfer Functions in estimating saturated water content of limy soils. Journal of Irrigation and Water Engineering, 3(4), 71-82 (in Persian).
Shahnavaz, M., Charm, M., & Hasounipourzadeh, H. (2009). Study of the physicochemical characteristics and heavy metal of concentrations sediments of the Karoon river for their application in agriculture. Water and Wastewater, 20(3), 94-98 (in Persian).
Shangguan, W., Dai, Y., García-Gutiérrez, C., & Yuan, H. (2014). Particle-size distribution models for the conversion of chinese data to FAO/USDA System. The Scientific World Journal, 1-11.
Sigua, G.C., Holtcamp, M.L., & Coleman, S.W. (2004). Assessing the efficacy of degraded materials from Lakepanasoffkee, Florida: Implication to environment and agriculture- Part 2: Pasture establishment and forage productivity. Environmental Science and Pollution Research, 11, 394-399.
Yang, X., Lee, J., Barker, D.E., Wang, X., & Zhang, Y. (2012). Comparison of six particle size distribution models on the goodness-of-fit to particulate matter sampled from animal buildings. Journal of the Air & Waste Management Association, 62(6), 725-735.
Zhao, P., Shao, M.A., & Horton, R. (2011). Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophysica, 59(1), 124-138.
Zolfaghari, A.S., Tirgar Soltani, M.T., Yazdani, M.R., & Soleimani Sardo, E. (2014). Investigation of models for describing soil particle size distribution. Iranian Journal of Soil and Water Research, 45(2), 199-209 (in Persian).