Afsharinia, M., & Panahi, F. (2021). Effect of climatic drought on surface soil salinity in Kashan Plain. Water and Soil Management and Modelling, 1(2), 40-52 (in Persian).
Almazroui, M., Islam, M.N., Saeed, F., Alkhalaf, A.K., & Dambul, R. (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmospheric Research, 194, 202-213.
Almazroui, M., Saeed, F., Islam, M.N., & Alkhalaf, A.K. (2016). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR4 Global Climate Models over the Arabian Peninsula. Atmospheric Research, 182, 163-175.
Asad Falsafizadeh, N., & Sabouhi Sabouni, M. (2013). Investigation of climate change phenomenon on agricultural production. Journal of Agricultural Economics and Development, 26(4), 272-286 (in Persian).
Barkhori, S., Rafiei sardooi, E., Ramezani, M., Azareh, A., & Nasabpoor, M. (2020). Predicting net primary production of different biomes of Jiroft Plain in the face of climate change. Journal of Range and Watershed Managment, 73(3), 453-471 (in Persian).
Darvand, S., Eskandari Damaneh, H., Eskandari Damaneh, H., & Khosravi, H. (2021). Prediction of the change trend of temperature and rainfall in the future period and its impact on desertification. Water and Soil Management and Modelling, 1(1), 51-64 (in Persian).
Doorenbos, J., & Kasssam, A.H. (1979). Yield response to water. FAO Irrigation and Drainage papers, 33, 203 pages.
Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J.A., Taboada, C., & Steduto, P. (2009). Simulating yield response of quinoa to water availability with AquaCrop. Agronomy Journal, 101(3), 499-508.
Ghosh, S., & Mujumdar, P.P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, 31(1),132–146.
Keikha, A., Khanlary, A., Keikha, A., & Sabouhi, M. (2020). The effect of climate change on land usage and agricultural sector performance in Mazandaran province. Journal of Environmental Science and Technology, 22(10), 93-104 (in Persian).
Khayat, A., Amirabadizadeh, M., Pourreza-Bilondi, M., & Khozeymehnehad, H. (2020). Study temperature & precipitation parameters under the effect of climate change (Case study: Birjand Plain). Irrigation and Water Engineering, 11(1), 200-210 (in Persian).
Moafimadani, F., Mosavibaygani, M., & Ansari, H. (2015). Prediction of Khorasan Razavi Province drought condition at 2011-2030 with LARS-WG downscaling model. Geography and Environmental Hazard, 7(2), 157–171 (in Persian).
Moameni, S., & Zibae, M. (2013). Potential impacts of climate change on agriculture in Fars Province. Journal of Economics and Agricultural Development, 27(3), 169-179 (in Persian).
Motevalibashi Naeini, E., Akhond Ali, A., Radmanesh, F., Sharifi, M., & Abedi Koupaei, J. (2019). Zoning map of drought characteristics under climate change scenario using copula method in the Zayandeh Roud River Catchment. Irrigation Sciences and Engineering, 42(1), 145-160 (in Persian).
Naderi, M., (2020). Risks of floods and drought in arid and semi-arid regions under climate change conditions: North of Fars province. Iranian Journal of Water Research, 36, 85-97 (in Persian).
Nikbakht Shahbazi, A. (2017). Assessment of climate change impact on precipitation and temperature variation in watershed of Karoon 3 Dam. Journal of Environment and Water Engineering, 3(2), 133–143 (in Persian).
Node Farahani, M., Rasekhi, A., Parmas, B., & Keshvari, A. (2018). The effects of climate change on temperature, precipitation and drought in the the future Shadegan basin. Iran-Water Resources Research, 14(3), 125-139 (in Persian).
Shirdeli A., Lotfi F., Khani Temeliyeh Z., Fakhimi P., & Salehi M. (2018). The effect of climate change on sorghum's yield in Abhar Plain. Journal of Environment and Water Engineering, 4(4), 344–356 (in Persian).
Soleymani Nejad, S., Dourandish, A., Sabouhi, M., & Banayan Aval, M. (2019). The effects of climate change on cropping pattern (Case study: Mashhad Plain). Iranian Journal of Agricultural Economics and Development Research, 50(2), 249-263 (in Persian).
Tsakmakis, I.D., Kokkos, N.P., Gikas, G.D., Pisinaras, V., Hatzigiannakis, E., Arampatzis, G., & Sylaios, G.K. (2019). Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agricultural Water Management, 213, 419-432.
Wilby, R.L., & Dettinger, M.D. (2000). Streamflow changes in the Sierra Nevada, CA simulated using a statistically downscaled General Circulation Model scenario of climate change. Pp. 99–121, In: McLaren, S.J., & Kniveton, D.R. (eds.), Linking climate change to land surface change, Kluwer Academic Publishers, Netherlands.
Xu, C.Y. (1999). Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resources Management, 13(5), 369-382.
Zhang, W., Liu, W., Xue, Q., Chen, J., & Han, X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science and Technology, 68(4), 821-828.