بهینه‌سازی طراحی کانال‌های جمع‌آوری رواناب شهری برای کاهش آسیب‌پذیری و افزایش اطمینان‌پذیری در برابر تغییرات اقلیمی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد/ گروه منابع آب، دانشکدة محیط ‌زیست، دانشگاه تهران، تهران، ایران

2 استاد/ گروه منابع آب، دانشکدة محیط ‌زیست، دانشگاه تهران، تهران، ایران

3 استادیار، گروه منابع آب، دانشکدة محیط‌زیست، دانشگاه تهران، تهران، ایران

چکیده

یکی از زیرساخت‌های شهری که از اهمیت بالایی برخوردار است، شبکة جمع‌آوری رواناب است. افزایش سطوح نفوذناپذیر، فرسودگی شبکه و تغییر الگوی بارش ناشی از تغییرات اقلیمی موجب افزایش رخداد سیلاب شهری شده و اهمیت بازطراحی شبکه به‌منظور به‌حداقل رساندن آسیب‌پذیری سامانه را بالا برده است. در این پژوهش شبکة جمع‌آوری رواناب منطقة 10 شهرداری تهران مورد بازطراحی بهینه قرار گرفت. در همین راستا، شبکة جمع‌آوری در دو مرحله توسط مدل SWMM شبیه‌سازی شد. از الگوریتم ژنتیک نیز به‌عنوان ابزاری جهت بهینه کردن بازطراحی استفاده شده است. در بخش شبیه‌سازی، نخست شبکة جمع‌آوری در وضع موجود با استفاده از اطلاعات تاریخی بارش ایستگاه سینوپتیک مهرآباد طی دوره‌های بازگشت دو، پنج و 10 سال شبیه‌سازی شد و در مرحلة دوم مدل‌سازی شبکة جمع‌آوری در شرایط آتی با استفاده از اطلاعات بارشی مدل‌های اقلیمی گزارش ششم تغییر اقلیم صورت گرفت. از میان پیش‌بینی مدل‌های اقلیمی، بیش‌ترین تغییرات افزایشی بارش حدی به‌عنوان سناریوی بدبینانه انتخاب و بازطراحی سامانه برای کاهش آسیب‌پذیری تحت این سناریو انجام گرفت. سه پارامتر هزینه، شاخص اطمینان‌پذیری و شاخص آسیب‌پذیری به‌عنوان اهداف بهینه‌سازی با وزن‌دهی مشخص در قالب یک تابع معرفی شد. سپس با مرتبط ساختن مدل شبیه‌ساز با بهینه‌ساز توسط نرم‌افزار متلب بازطراحی بهینه انجام شد. نتایج شبیه‌سازی شبکه در وضع موجود نشان داد که با افزایش دورة بازگشت از دو تا 10 سال، حجم رواناب خروجی از 9/45 تا 7/59 هزار مترمکعب افزایش یافت که موجب افزایش آسیب‌پذیری از 4/10 تا 2/12 درصد و کاهش اطمینان‌پذیری از 5/97 تا 8/95 درصد شده است. در شبیه‌سازی شبکه در شرایط آتی نیز شاخص آسیب‌پذیری در دوره‌های بازگشت پنج و 10 سال، 7/12 و 9/13 درصد و شاخص اطمینان‌پذیری نیز 3/95 و 3/94 به‌دست آمد. نتایج بهینه‌سازی نشان داد که در تکرار 168، الگوریتم به پاسخ نهایی خود به مقدار 3/0 رسیده و این پاسخ تا تکرار 300 ثابت باقی‌مانده است. هم‌چنین، بازطراحی بهینه موجب کاهش آسیب‌پذیری شبکه تا 6/7 درصد و افزایش اطمینان‌پذیری تا 1/98 درصد شد. این پژوهش نشان داد که بازطراحی بهینه می‌تواند علاوه‌بر رفع مشکلات شبکه در وضع موجود، توانایی سامانه را نیز در برابر تهدیدات تغییر اقلیم آینده بالا برد.

کلیدواژه‌ها

موضوعات


References
Al-Zahrani, M., Al-Areeq, A., & Sharif, H.O. (2017). Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomatics, Natural Hazards and Risk, 8(2), 672-688. doi:10.1080/19475705.2016.
1255668
Barkhordari, S., Hamze Ghasabsarai, M., Garshasbi, M., Movahedinia, M., & Hashemy Shahdany, S.M. (2022). A practical method for rehabilitation of stormwater collecting system by node flooding detection and regional hydraulic redesign: a case study of eastern Tehran metropolis. Water Science & Technology, 86(7), 1759-1773. doi:10.2166/wst.2022.312
Behzadi P., Roozbahani A., & Massah Bavani A. (2019). Analysis of sustainability index in stormwater drainage systems under the climate change impacts (case study: district 11 of Tehran). Iranian Journal of Ecohydrology, 6(3), 631-649 doi: 10.22059/ije.2019.
274672.1035
. [In Persian]
Behzadi, P., Roozbahani, A., & Masah Bavani, A. (2018). Assessment of climate change impacts on the reliability of surface water data (case study: district 11 of Tehran Municipality). Sixth Integrated Management and Flood Engineering Conference, Tehran, Iran  https://civilica.com/doc/815894. [In Persian]
Chen, W., Huang, G., & Zhang, H. (2017). Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model. Water Science and Technology, 76(12), 3392-3403. doi: 10.2166/wst.2017.504.
Debo, T.N., & Reese, A. (2002). Municipal Stormwater Management. 2nd Edition: CRC Press, 1172 Pages. doi:10.1201/978142
0032260
Dong, X., Guo, H., & Zeng, S. (2017). Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Research, 124, 280-289. doi:10.1016/j.watres.2017.07.038
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., & Taylor, K.E. (2016). Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. doi:10.5194/gmd-9-1937-2016, 2016.
Hashimoto, T., Stedinger, J.R., & Loucks, D.P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/WR018i001p00014
Hassani, M.R., Niksokhan, M.H., Ardestani, M., & Mousavi Janbehsarayi, S.F. (2022). Evaluating the effects of climate change on urban runoff based on CMIP6 models (case study: district 10 of Tehran municipality). Water and Soil Management and Modelling, 3(2), 269-285 doi:10.22098/mmws.2022.11849.1176. [In Persian]
Hassani, M.R., Niksokhan, M.H., Janbehsarayi, S.F.M., & Nikoo, M.R. (2023). Multi-objective robust decision-making for LIDs implementation under climatic change. Journal of Hydrology, 617, 128954. doi:10.1016/j.jhydrol.2022.128954
Holland, J.H. (1975). An efficient genetic algorithm for the traveling salesman problem. European Journal of Operational Research, 145, 606-617.
Hussain, S.N., Zwain, H.M., & Nile, B.K. (2022). Modeling the effects of land-use and climate change on the performance of stormwater sewer system using SWMM simulation: case study. Journal of Water and Climate Change, 13(1), 125-138. doi:10.2166/wcc.2021.180
Janbehsarayi, S.F.M., Niksokhan, M.H., Hassani, M.R., & Ardestani, M. (2023). Multi-objective decision-making based on theories of cooperative game and social choice to incentivize implementation of low-impact development practices. Journal of Environmental Management, 330, 117243. doi:10.1016/j.jenvman.2023.117243
Jiang, L.E.I., Chen, Y.A.N.G.B.O., & Wang, H.U. A.N.Y.U. (2015). Urban flood simulation based on the SWMM model. Proceedings of the International Association of Hydrological Sciences, 368, 186-191. dor: 10.5194/piahs-368-186-2015
Kumar, S., Agarwal, A., Ganapathy, A., Villuri, V. G.K., Pasupuleti, S., Kumar, D., Kaushal, D. R., Gosain, A.K., & Sivakumar, B. (2022). Impact of climate change on stormwater drainage in urban areas. Stochastic Environmental Research and Risk Assessment, 36(1), 77-96. doi:10.1007/s00477-021-02105-x
Latifi, M., Rakhshandehroo, G., Nikoo, M.R., & Mooselu, M.G. (2023). Multi-stakeholder stochastic optimization of urban low impact developments for climate consistency under uncertainty. Journal of Cleaner Production, 382, 135259. doi:10.1016/j.jclepro.2022.135259
Lord, S.A., Ghasabsaraei, M.H., Movahedinia, M., Shahdany, S.M.H., & Roozbahani, A. (2021). Redesign of stormwater collection canal based on flood exceedance probability using the ant colony optimization: study area of eastern Tehran metropolis. Water Science and Technology, 84(4), 820-839. doi:10.2166/wst.2021.273
Mahab Quds Consulting Engineering Company (2011). Comprehensive plan of Tehran surface water management. Volume 2, Part 1, 63. [In Persian]
Mirjalili, S. (2019). Genetic algorithm. In Studies in Computational Intelligence (pp. 43-55). Springer Verlag.
Movahedinia, M., Samani, J.M.V., Barakhasi, F., Taghvaeian, S., & Stepanian, R. (2019). Simulating the effects of low impact development approaches on urban flooding: a case study from Tehran, Iran. Water Science and Technology, 80(8), 1591-1600. doi:10.2166/wst.2019.412
Mugume, S., Gomez, D.E., & Butler, D. (2014). Quantifying the resilience of urban drainage systems using a hydraulic performance assessment approach. 13th International Conference on Urban Drainage, Sarawak, Malaysia. doi: 10.13140/2.1.3291.1047
Nahid, M., Zandmoghadam, M.R., & Karkehabadi, Z. (2022). Measuring and evaluating the resilience of urban areas against urban flooding (Case study: Tehran zone 4). Journal of Environmental Science and Technology, 24(5), 125-145. doi: 10.22034/jest.2021.56185.5194. [In Persian]
Noori Khaje Balagh, H., & Mousavi, F. (2021). Effects of climate change on quantity and quality of urban runoff in a part of Karaj Watershed based on RCP scenarios. Journal of Water and Soil Science, 25(3), 59-78 doi: 10.47176/jwss.25.3.1013. [In Persian]
Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo Cuaresma, J., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, Sh., Emmerling, J., Ebi, K., & Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change, 42, 153-168. doi:10.1016/j.gloenvcha.2016.05.009
Roozbahani, A., Behzadi, P., & Bavani, A.M. (2020). Analysis of performance criteria and sustainability index in urban stormwater systems under the impacts of climate change. Journal of Cleaner Production, 271, 122727. doi:10.1016/j.jclepro.2020.122727
Sadeghi, S., Samani, J.M.V., & Samani, H.M.V. (2022). Risk and damage based optimal design of storm sewer networks using rational and fully dynamic methods, a case study (Tehran region 2). Water Science and Technology, 85(12), 3419–3435. doi:10.2166/wst.2022.180
Silva, F.V., Bonuma, N.B., & Uda, P.K. (2014). Flood mapping in urban area using HEC-RAS model supported by GIS. In International Conference on Flood Management, 9pp. https://eventos.abrh.org.br/icfm6/proceedings/papers/PAP014412.pdf
Stouffer, R.J., Eyring, V., Meehl, G.A., Bony, S., Senior, C., Stevens, B., & Taylor, K.E. (2017). CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98(1), 95-105. doi:10.1175/BAMS-D-15-00013.1
Tasca, F.A., Assunção, L.B., & Finotti, A.R. (2018). International experiences in stormwater fee. Water Science and Technology, 2018(1), 287-299. doi:10.2166/wst.2018.112
Yarahmadi, Y., ghazavi, R., & ghasemiyeh, H. (2022). Evaluating the efficiency of the surface drainage network and nodes in order to contain urban runoff using the SWMM model in west of Tehran's sixth district. Watershed Management Research, 36(2), 104-120  doi: 10.22092/wmrj.2022.359788.1489. [In Persian]
Zahedi Khameneh, H., & Khodashenas, S.R. (2021). Performance evaluation of stormwater collection system and sensitivity analysis of parameters affecting it (Study of districts 10 and 11 of Mashhad). Iranian Journal of Irrigation & Drainage, 15(5), 1067-1080  dor: 20.1001.1.20087942.1400.15.5.7.5. [In Persian]