اثر ریزموجودات مفید بر میزان عناصر برگ و ریشة پایه‌های بادام در شرایط تنش شوری

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار/ گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش‌آموخته دکتری/ گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش‌آموخته کارشناسی ارشد/ گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

شناسایی روش­های کارآمد در مقابله با تنش­های غیرزیستی یک چالش بزرگ است. به‌منظور انتخاب پایه ­های جدید مقاوم به شوری و اثر سطوح مختلف شوری و تیمارهای ریزموجودات مفید بر میزان عناصر مختلف غذایی در برگ و ریشه نهال­ های بادام، پژوهشی به‌صورت فاکتوریل و در قالب طرح بلوک­های کامل تصادفی با سه تکرار، در فضای باز دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی طی سال­های 1394 تا 1395 انجام شد. نهال­های دوساله دو هیبرید هلو و بادام (GF677 و GN15) و پایة بذری بادام، با کود زیستی ریزموجودات مفید با غلظت­های EM0؛ صفر، EM1؛ 10، EM2؛ 20 و EM3؛ 30 میلی­لیتر بر لیتر به روش کاربرد خاکی روی پایه ­ها اعمال شدند. از اوایل تیر، به‌مدت 60 روز، گلدان­ها هر دو روز یک‌بار با آب ‌شور حاوی سطوح مختلف کلریدسدیم (S0؛ صفر، S1؛ 60، S2؛ 120 و S3؛ 180 میلی­مولار کلریدسدیم) آبیاری شدند. برای ارزیابی این شرایط، روی پایه ­های بادام، عناصر غذایی نظیر سدیم، کلر، پتاسیم، کلسیم، نیتروژن و نسبت پتاسیم به سدیم برگ و ریشه اندازه‌گیری شدند. تحلیل واریانس داده‌ها‌ نشان داد که در تیمار ریزموجودات مفید، اثر متقابل سال و پایه، بر کلسیم برگ از نظر آماری معنادار بود. اثرات ساده تیمارها، در تمام عناصر مورد بررسی از نظر آماری، دارای تفاوت معناداری بودند. اثرات متقابل بین تیمارها نیز از نظر آماری اختلاف معناداری داشتند. از بین عناصر مورد ارزیابی، نیتروژن برگ، نسبت پتاسیم به سدیم برگ، نشان‌گرهای مناسبی به‌منظور بررسی تحمل به شوری پایه‌های بادام بودند. کاربرد کودهای زیستی باعث بهبود تمام شاخص­های مورد مطالعه در هر سه پایة مورد مطالعه شد و بهترین نتیجه، مربوط به ترکیب تیمار پایه GF677، سطح 30 میلی­لیتر بر لیتر ریزموجودات مفید و صفر میلی­مولار شوری بود. در شرایط فوق، هیبرید GF677، نسبت به دو پایه دیگر، در شرایط تنش شوری ناشی از کلریدسدیم متحمل­تر ارزیابی شد و پایه ­های بذری و GN15 در رده ­های بعدی قرار گرفتند.

کلیدواژه‌ها

موضوعات


مستوفی، یونس، و نجفی، فرزانه (1384). روش­های آزمایشگاهی تجزیه ­ای در علوم باغبانی (ترجمه). انتشارات دانشگاه تهران، 136 صفحه.
ﺷﻜﻮﻫﻴﺎن، علی اکبر، داوری ­نژاد، غلامحسین، تهرانی­ فر، علی، رسول­ زاده، علی، و اﻳﻤﺎﻧﻲ، علی (1392). ارزیابی اثرات تنش آبی و ریز موجودات مفید بر خصوصیات مرفوفیزیولوژیک و بیوشیمیایی پایه‌های رویشی بادام. پایان­نامۀ دکتری، دانشگاه فردوسی مشهد. 
گرگینی شبانکاره، حسین، اصغری­پور، محمدرضا، و فاخری، براتعلی (1394). اثر کودهای زیستی بر شاخص­های رشد و اسانس بادرشبو (Dracoceohalum moldivica L.) تحت تنش خشکی. اکوفیزیولوژی گیاهی، 7(23)، 187-194. dor: 20.1001.1.20085958.1394.7.23.17.3
همائی، مهدی (1381). واکنش گیاهان به شوری. چاپ اول، کمیته ملی آبیاری و زهکشی ایران، 112 صفحه.
 
Abdoli Nejad, R., & Shekafendeh, A. (2014). Salt stress-induced changes in leaf antioxidant activity, proline and protein content in Shah Anjir and Anjir Sabz fig seedlings. International Journal of Horticultural Science and Technology, 1(2), 121-129. doi:10.22059/ijhst.2014.52782 
Abdulrahman, A.S. (2013). Effect of foliar spray of ascorbic acid, zinc, seaweed extracts and biofertilizer (EM1) on growth of almond (Prunus amygdalus) seedling. International Journal of Pure and Applied Science and Technology, 17(2), 62-71.
Asgharzade, A., & Babaeian, M. (2012). Investigation the effects of humic acid and acetic acid foliar application on yield and leaves nutrient content of grape (Vitis vinifera). African Journal of Micribiology Research, 6(31), 6049-6054.          doi:10.5897/AJMR12.425
Antoun, H., & Kloepper, J.W. (2001). Plant growth promoting rhizobacteria. Pp. 1477-1480, In: Brenner, S., Miller, J.H. (Ed.), Encyclopedia of genetics, New York, Academic.
Benhassaini, H., Fetati, A., Hocine, A.K., & Belkhodja, M. (2012). Effect of salt stress on growth and accumulation of proline and saluble sugars on plantlets of Pistacia atlantica Desf. Subsp. atlantica used as rootstocks. Biotechnology, Agronomie, Society, and Environment, 16(2), 159-165.
Bajji, M., Kinet, J.M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36(1), 61-70. doi:10.1023/A:1014732714549
Cattelan, A.J., Hartel, P.G., & Fuhrman, J.J. (1999). Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63(6), 1670-1680. doi:10.2136/sssaj1999.6361670x
Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis, I. (2002). Effect of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96(1), 235-247. doi:10.1016/S0304-4238(02)00067-5
Dejampour, J., Aliasgharzad, N., Zeinalabedini, M., Rohan Niya, M., & Majidi Hervan, E. (2012). Evaluation of salt tolerance in almond (Prunus dulcis L. Batsch) rootstocks. African Journal of Biotechnology, 11(56), 11907-11912. doi: 10.5897/AJB11.2996
Duarte, H.H.F., Souza, E.R. (2015). Soil water potential and Capsicum annum L. under salinity. Revista Brasileria de Ciencia do Solo, 40, 1-10. doi:10.1590/18069657rbcs20150220
El-Hamied, S.A.A. (2014). Effect of multi-ingredient of Bokashi on productivity of mandarin trees and soil properties under saline water irrigation. ISOR Journal of Agriculture and Veterinary Science, 7(11), 79-87.
Fan, L., Zhou, X., Li, Y., Ji, L., Wu, G., & Li, B. (2016). The influence of effective microorganisms on microbes and nutrients in kiwifruit plantingsoil. Applied Sciences, 6(6), 1-9. doi:10.3390/app6060168
Fisarakis, I., Chartzoulakis, K., & Stavrakas, D. (2001). Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51(1), 13-27. doi:10.1016/S0378-3774(01)00115-9
Grover, M., Shandhya, SK.Z., Rasal, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stress. World Journal of Microbial and Biotechnology, 27(5), 1231-1240. doi:10.1007/s11274-010-0572-7
Garcia-Sanchez, F., Jifon, J.L., Carvajal, M., & Syvertsen, J.P. (2002). Gas exchange, chlorophyll and nutrient content in relation to Na+ and Cl- accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Science, 162(5), 705-712.  doi:10.1016/S0168-9452(02)00010-9
Grattan, S.R., & Grieve, C.M. (1998). Salinity-mineral nutrient relation in horticultural crops. Scientia Horticulturae, 78, 127-157. doi:10.1016/S0304-4238(98)00192-7
Glick, B.R., Penrose, D.M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63-68. doi:10.1006/jtbi.1997.0532
Gorgini Shabankareh, H., Asgharipour, M.R., & Fakheri, B.A. (2015). The effect of bio fertilizers on some growth parameters and essential oil of Moldavian dragonhead under drought condition. Plant Ecophysiology, 7(23), 187-194. dor: 20.1001.1.20085958.1394.7.23.17.3 [In Persian]
Hatami, E., Esna-Ashari, M., & Javadi, T. (2012). Effect of salinity on some growth characteristics and concentration of elements in two grape (Vitis vinifera L.) cultivars, Rishbaba, and Sahebi. Plant Stress, 6(1), 77-80.
Hamada, A.M., & El-enany, A.E. (1994). Effect of NaCl salinity on growth, pigment, mineral contents and gas exchange of broad bean and pea plants. Biologia Plantarum, 36(1), 75-81. doi:10.1007/BF02921273
Higa, T. (1996). An earth saving revolution. Sunmark Publishing Tokyo, Japan.
Homaee, M. (2002). Plants Response to Salinity. 1th Edition: ranian National Committee on
Irrigation and Drainage, 112 pages. [In Persian]
Jha, Y. (2017). Cell water content and lignification in maiz regulated by rhizobacteria under salinity. Brazilian Journal of Biological Sciences, 4(7), 9-18. doi:10.21472/bjbs.040702
Jones, H.G., & Tardieu, F. (1998). Modeling water relations of horticultural crops: a review. Scientia Horticulturae, 74(1), 21-46. doi:10.1016/S0304-4238(98)00081-8
Johnson, J.M., & Ulrich, A. (1975). Analytical methods for use in plant analysis. Scientia Horticulturae, 766(1), 26-78.
Kharusi, L.A., Assaha, D.V.M., Al-Yahyai, R., & Yaish, M.W. (2017). Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests, 8(4), 1-14. doi:10.3390/f8040136
Levitt, J. (1980). Responses of plants to environmental stresses: water, radiation, salt and other stresses. New York, Academic Press.
Lonergan, J.F., & Webb, M.J. (1993). Interactions between zinc and other nutrients affecting the growth of plants. Pp. 119-134, In: Robson, A.D. (Eds.), Zinc in soils and plants, Dordrecht: Kluwer Academic Publishers.
Mostofi, Y., & Najafi, F. (1384). Laboratory Manual of Analytical Techniques in Horticulture. Tehran University Publications, 136 pages. [In Persian]
Olyaei, F., Baninasab, B., Ghobadi, C., & Gholami, M. (2015). Ion content and its correlation with some physiological parameters in olive cultivars in response to salinity. Iran Agricultural Research, 34(2), 61-70.
 Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(1), 361-367.
Roussos, P.A., Assimakopoulou, A., Nikoloudi, A., Salmas, I., Nifakos, K., Kalogeropoulos, P., & Kostelenos, G. (2017). Intra- and inter-cultivar impacts of salinity stress on leaf photosynthetic performance, carbohydrates and nutrient content of nine indigenous Greek olive cultivars. Acta Physiologiae Plantarum, 39(6), 1-17. doi:10.1007/s11738-017-2431-8
Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. Second Edition. Available from ICARDA, Aleppo, Syria.172 pages.
Soni, A., Dhakar, S., & Kumar, N. (2017). Mechanisms and strategies for improving salinity tolerance in fruit crops. International Journal Current Microbiology Applied Scientia, 6(8), 1917-1924. doi:10.20546/ijcmas.2017.608.22
Salama, A.S.M., El-Sayed, O.M., & El Gammal, O.H.M. (2014). Effect of effective microorganisms (EM) and potassium sulphate on productivity and fruit quality of “Hayany” date palm grown under salinity stress. IOSR Journal of Agriculture and Verterinary Science, 7(6), 90-99. doi:10.9790/2380-07619099
Storey, R., & Walker, R.R. (1998). Citrus and salinity. Scientia Horticulturae, 78(1), 39-81. doi:10.1016/S0304-4238(98)00190-3
Shafieizargar, A.R., Awang, Y., Ajamgard, F., Juraimi, A.Sh., Othman, R., & Kalantar Ahmadi, A. (2015). Assessing five citrus rootstocks for NaCl salinity tolerance using mineral concentrations, proline and relative water contents as indicators. Asian Journal of Plant Science, 14(1), 20-26. doi:10.3923/ajps.2015.20.26
Shirvastava, P., & Kumar, R. (2015). Soil salinity: a serius environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Scientces, 22(2), 123-131. doi:10.1016/j.sjbs.2014.12.001
Sharma, R.R. (2002). Growing strawberries. First edition, International book distributing Company, New Delhi, 164 pages.
Shokouhian, A., Davarynejad, GH., Tehehranifar A., Rasoulzadeh, A., & Imani, A. (2013). Evaluate the effects of water stress and effective microorganisms on morphophysiological and biochemical properties of almond vegetative rootstocks. Ph.D. Thesis, Ferdowsi University of Mashhad, Mashhad, Iran. [In Persian]
Zrig, A., Ben Mohammed, H., Tounekti, T., Ahmed, S.O., & Khemira, H. (2015). Differential responses of antioxidant enzymes in salt-stressed almond tree grown under san and shade condition. Journal of Plant Science and Research, 2(1), 1-12.
Zydlik, P., & Zydlik, Z. (2008). Impact of biological effective microorganisms (EM) properties some physico-chemical properties of soil and the vegetative growth of apple-tree rootstocks. Nauka Przyroda Technologie, 2(1), 1-8.