

Water and Soil Management and Modeling

Online ISSN: 2783 - 2546

A systematic review of performance assessment in canal irrigation systems: Integrating socio-technical, remote sensing, and AI-driven approaches for a climate-resilient future

Mohansing Rajaput¹*, Abhilash Ramadasa ², Basavanand M. Dodamani ³

- ¹ Ph.D. Scholar, Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India
- ² Scientist 'C', National Institute of Hydrology, Hard Rock Regional Centre, Visvesvaraya Nagar, Belagavi-590019, Karnataka, India
- ³ Professor, Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India

Abstract

This systematic review investigates the evolution of performance assessment in canal irrigation systems globally, drawing evidence from Asia, Africa, and Latin America. Adhering to PRISMA guidelines, it synthesized 98 peerreviewed studies and key organizational reports published between 1990 and 2025, primarily from Scopus and Web of Science. The analysis reveals a clear methodological progression from direct measurements to remote sensing (RS) and agro-hydrological modeling, with Artificial Intelligence (AI) now evidenced as an applied tool in some assessments, not merely a prospect. A critical insight, however, is that despite these technical advancements, persistent underperformance is primarily rooted in deep-seated non-technical (financial, institutional, social) barriers. The current review highlights a significant gap: the absence of a unified framework systematically integrating these technical and socio-institutional dimensions with forward-looking climate resilience. Our primary contribution is a novel, integrated socio-technical assessment framework designed to bridge this divide. Distinct from previous reviews, the proposed framework explicitly combines the methodological triad, comprehensive socio-institutional analysis, quantifiable climate resilience metrics, and mechanisms to ensure social equity in AI-driven management. This adaptable, multi-scale diagnostic tool offers an actionable blueprint, applicable from local canal management to national policy levels, that accounts for diverse regional data limitations. By enabling more effective problem diagnosis and intervention design, the proposed framework provides significant analytical value and actionable lessons for enhancing the productivity, equity, and climate resilience of canal irrigation systems, thereby directly advancing Sustainable Development Goals 2 and 6. **Keywords:** Agro-hydrological modelling, AI and ML, Climate change, Direct Measurement, Performance evaluation.

Article Type: Review Article

*Corresponding Author, E-mail: mohansingr@gmail.com

Citation: Rajaput, M., Abhilash, R., & Dodamani, B. M. (2025). A systematic review of performance assessment in canal irrigation systems: Integrating socio-technical, remote sensing, and AI-driven approaches for a climate-resilient future, Water and Soil Management and Modeling, 5(4), 254-276.

doi: 10.22098/mmws.2025.18343.1683

Received: 17 September 2025, Received in revised form: 03 October 2025, Accepted: 20 October 2025, Published online: 07

Water and Soil Management and Modeling, Year 2025, Vol. 5, No. 4, pp. 254-276. Publisher: University of Mohaghegh Ardabili © Author(s)

1. Introduction

1.1. The enduring challenge

Canal irrigation systems are a cornerstone of global food production. While irrigated land constitutes only 20% of global cropland, it is responsible for a remarkable 40% of the world's food supply, highlighting its profound impact on agricultural productivity (Schultz et al. 2005). In many arid and semi-arid nations, these systems are the lifeblood of agriculture, with irrigation accounting for over 90% of total freshwater withdrawals (UNESCO, 2021). This intensive water use places canal irrigation at the center of a critical tension between two of the United Nations' Sustainable Development Goals: SDG 2 (Zero Hunger), which demands increased food production, and SDG 6 (Clean Water and Sanitation), which calls for sustainable water management and improved water-use efficiency across all sectors (IFPRI, 2019; UN, 2022).

1.2. The pervasive "performance gap": a quantified challenge

Despite their importance, a persistent and welldocumented "performance gap" exists in many canal systems, where actual performance falls drastically short of design potential (Molden, 2013; Ward et al., 2024). This is not a minor issue; it is a systemic failure with significant quantitative dimensions. Globally, the overall efficiency of many canal systems languishes between 30% and 50%, meaning that up to 70% of the water diverted is lost before reaching the crop root zone due to a combination of physical losses (seepage, evaporation) and managerial inefficiencies (FAO, 2020; Jägermeyr et al., 2015). This chasm between design and reality is starkly illustrated in regions like South Asia, where conveyance efficiencies in some largescale systems have been measured at less than 40% (Rasul, 2016) The consequences are direct and severe; a yield gap where actual agricultural production is 30-50% lower than its potential (FAO & DWFI, 2015), inequitable water distribution that leaves tail-end farmers with chronic shortages, and accelerated infrastructure decay (Kori & Umesh, 2020; Kulkarni, 2020; Yapa et al., 2020).

Furthermore, climate change is no longer a future threat but a present reality, directly exacerbating this performance gap. Recent studies from river basins across the world demonstrate tangible impacts: a meta-analysis by Woznicki et al. (2015) projected that irrigation demands could increase by over 40% in some regions due to rising temperatures (Woznicki et al., 2015), while recent works on changing climate showed a 15% reduction in water availability for irrigation due to altered precipitation patterns (Orkodjo et al., 2022; Rosa & Sangiorgio, 2025). These climatic shifts place unprecedented stress on already underperforming systems, making performance assessment and improvement an urgent priority.

1.3. The evolving landscape of performance assessment

The methods used to diagnose and address these performance gaps have evolved significantly. Early assessments were dominated by a narrow. engineering-centric focus on hydraulic efficiency, relying on direct, field-based measurements (Bos & Nugteren, 1990). A paradigm shift began in the late 20th century, marked by the development of more holistic evaluation frameworks that recognized irrigation systems as complex sociotechnical entities. These foundational frameworks broadened the scope of assessment to include agricultural, economic, and social dimensions, providing the intellectual bedrock performance modern analysis. summarized in Table 1, three frameworks were particularly influential in this shift. Small & Svendsen (1990) introduced a "nested systems" framework, conceptualizing irrigation as a series of interconnected systems where the output of one (e.g., water delivery) becomes the input for the next (e.g., agricultural production), extending all the way to the national socio-economic system. This highlighted the multifaceted purposes of irrigation beyond simple water conveyance. Building on this, Murray-Rust & Snellen (1993) framed performance assessment diagnostic tool for management, emphasizing the use of outputs to identify opportunities for improvement across the entire management cycle, rather than as an end in itself. Later, Bos et al. (2005) proposed a systematic, staged process that aligns the assessment's purpose, indicators, and data collection methods.

ensuring that evaluations are not only datainformed but also actionable for managers and stakeholders. This evolution in conceptual thinking reflects a broader shift in development practice from a focus on constructing physical infrastructure to a more nuanced understanding of the institutions, policies, and human factors that govern its success.

A review of the literature reveals that many prior syntheses on this topic have been largely narrative, offering fragmented summaries rather than a systematic analysis of methodological trends and persistent knowledge gaps. For instance, reviews like that of Pereira et al. (2012) provided on-farm analysis using indicators, while Muturi et al. (2025) focused narrowly on specific techniques like remote sensing, whereas Elshaikh et al. (2018) focused without integrating them into a broader socio-technical context. The current review addresses this deficiency by employing the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) methodology to systematically chart the evolution from traditional methods to modern, technology-driven approaches.

1.4. Research gaps and the emergence of new technologies

Our systematic review, which is global in scope but draws on case studies from key irrigated regions in Asia, Africa, and Latin America, identifies a critical disconnect: the persistence of a performance gap is often rooted in the failure to integrate technical assessments with the socioeconomic and institutional realities of water management. The rise of powerful new technologies now offers a pathway to bridge this gap. Advanced remote sensing platforms, such as the FAO's WaPOR database and high-resolution Sentinel-2 satellite imagery, provide unprecedented capabilities for monitoring agricultural water productivity and crop health (Tiruye et al., 2023). Simultaneously, the application of Artificial Intelligence (AI) is moving from a prospective tool to a demonstrated asset. For example, machine learning models are now being used to forecast crop water demand with high accuracy, enabling more efficient water allocation (Younes et al., 2024), explainable AI (XAI) is being used to create transparent decision-support tools for irrigation managers (Chen et al., 2023; Mdemu et al., 2025).

Table 1. Summary of Key Performance Evaluation Frameworks.

Framework	Core Concept	Primary Objective	Key Contribution			
Small & Svendsen (1990)	Nested Systems	To understand the interconnected purposes of irrigation, from water delivery to socio-economic impact.	Broadened the definition of performance beyond hydraulic efficiency to include agricultural and economic outcomes.			
Murray-Rust & Snellen (1993)	Management- Oriented Diagnosis	To use performance data as a diagnostic tool for continuous improvement in management, operations, and maintenance.	Shifted the focus from a static audit of outputs to a dynamic process for improving management effectiveness.			
Bos et al. (2005)	Systematic Staged Assessment	To provide a practical, purpose- driven process for designing and implementing actionable performance assessments.	Offered a structured, logical framework that links assessment purpose to methodology and ensures results are relevant to stakeholders.			

1.5. Objectives and contribution of the review

Given that fragmented technical assessments are insufficient for building the resilient irrigation systems required for the future, the objective of the review is twofold. First, it is to systematically synthesize the evolution of performance assessment charting methodologies. progression from traditional techniques to modern remote sensing and AI-driven approaches. Second, by highlighting the critical gap this synthesis reveals, namely, the persistent disconnect between technical metrics and socio-institutional realities, this review's primary contribution is to propose a novel, integrated socio-technical assessment framework. This framework offers an actionable blueprint that leverages modern technologies to guide the development of more productive, equitable, and climate-resilient canal irrigation systems.

2. Systematic review methodology

2.1. Review protocol

To ensure methodological transparency, rigor, and replicability, this systematic review was conducted in accordance with the PRISMA 2020 statement (Page et al., 2021). The adoption of this formal protocol directly addresses a critical weakness identified in previous versions of this work, which lacked a structured and defensible review methodology. The review protocol was designed a priori to answer four primary research questions:

- 1- How have the primary methodologies for assessing canal irrigation performance evolved?
- 2- What are the critical strengths, limitations, and areas of synergy among the core assessment approaches (direct measurement, remote sensing, and agro-hydrological modeling)?
- 3- What are the key non-technical (socioeconomic, institutional, financial) factors identified in the literature as primary barriers to achieving high performance?
- 4- How can emerging technologies (e.g., advanced remote sensing, AI) and pressing future challenges (e.g., climate change) be integrated into a cohesive and forward-looking assessment framework?

2.2. Search strategy and information sources

A comprehensive literature search was conducted using a multi-tiered approach to ensure both rigor and broad coverage of relevant scientific literature and influential reports. The primary systematic search was performed in two major academic databases: Scopus and Web of Science (WOS). These databases were chosen due to their extensive indexing of high-quality, peer-reviewed scientific literature across multiple disciplines, providing a robust and replicable baseline. Our decision to focus the primary systematic search on these two databases and to systematically exclude general grey literature was made to ensure a consistent standard of peer-reviewed evidence.

This primary search was supplemented by a targeted manual search for two types of additional highly relevant sources: (1) Influential reports from key international organizations central to irrigation management, such as the International

Commission on Irrigation and Drainage (ICID) and the Food and Agriculture Organization (FAO); and (2) A limited number of highly relevant peer-reviewed articles from other journals that were identified through the screening of reference lists of core review articles.

This hybrid strategy combines the systematic nature of database searching with the thoroughness of manual supplementation, ensuring our review is grounded in both a broad evidence base and seminal works in the field.

The search timeframe was set from 1990 to 2025. with the start date chosen to coincide with the publication of the influential Small & Svendsen (1990) framework, which marked a turning point conceptualization the of irrigation performance. The search query was constructed using a combination of keywords and Boolean operators to capture the multidisciplinary nature of the topic. To ensure comprehensiveness and avoid omitting relevant studies, the search string was rigorously developed and included terms such as "benchmarking," "irrigation efficiency," productivity," "water performance." "governance," and "machine learning." The core search string was:

("canal irrigation" OR "irrigation scheme" OR "irrigation system") AND ("performance assessment" OR "performance evaluation" OR "benchmarking" OR "irrigation efficiency" OR "water productivity" OR "water delivery performance") AND ("remote sensing" OR "agro-hydrological model" OR "socio-economic" OR "institutional" OR "governance" OR "climate change" OR "artificial intelligence" OR "machine learning")

2.3. Eligibility criteria and study selection

Studies retrieved from the database search were subjected to a rigorous three-stage screening process based on predefined inclusion and exclusion criteria, as illustrated in the PRISMA 2020 flow diagram (Figure 1).

Inclusion Criteria:

- Peer-reviewed journal articles, comprehensive review papers, and high-impact conference proceedings.
- Publication in the English language.

- The primary focus is on the performance of canal-fed surface irrigation systems.
- Studies that proposed, applied, or critically reviewed assessment frameworks, performance indicators, or specific methodologies (technical, socio-economic, institutional, or integrated).
- For the review, "high-impact conference proceedings" are precisely defined as: (1) proceedings from conferences sponsored by major international academic and professional societies in the fields of water resources and agricultural engineering (e.g., IAHS, ICID); and/or (2) proceedings that are fully indexed within the Scopus or Web of Science databases.

Exclusion Criteria:

Studies focused exclusively on on-farm irrigation technologies (e.g., drip, sprinkler) without a clear link to the performance of the canal delivery system.

- Studies focused exclusively on on-farm irrigation technologies (e.g., drip, sprinkler) without a clear link to the performance of the main canal delivery system.
- Studies concerning non-irrigation canals (e.g., for navigation, hydropower, or urban water supply).
- Grey literature (e.g., dissertations, theses, and non-peer-reviewed reports).

The selection process involved an initial screening of titles, followed by a review of abstracts, and concluded with a full-text assessment of potentially relevant articles. To minimize individual bias, all titles and abstracts were independently screened by two of the authors. Any discrepancies or uncertainties regarding the inclusion of a study were resolved through discussion and consensus with a third author.

The systematic search and screening process is rigorously summarized in the PRISMA 2020 flow diagram (Figure 1). The initial electronic search of Scopus and Web of Science databases yielded 2,130 records. An additional 47 records were identified through a manual search of reference lists from key review articles, resulting in 2,177

total records identified. After diligently removing 557 duplicate records, 1,620 unique records proceeded to title and abstract screening. This initial screening led to the exclusion of 640 records that were clearly outside the scope of the review (e.g., irrelevant topics, non-research articles). The full texts of the remaining 980 articles were then sought for retrieval and assessed for eligibility. Of these, 682 full-text articles could not be retrieved or were deemed unavailable. The remaining 298 full-text articles were then rigorously assessed against the predefined inclusion and exclusion criteria. This final eligibility assessment resulted in the exclusion of 200 articles. Ultimately, 98 studies were included in the qualitative synthesis of this present review. This transparent and systematic process ensures the replicability and robustness of our literature base upon which the review's conclusions are built.

2.4. Data extraction and synthesis

A structured data extraction template was developed and employed to systematically capture relevant information from each of the final included studies. The key variables extracted were categorized as follows: (i) Bibliometric Information (Authors, year, journal, study location); (ii) Study Objectives and Scope (Primary research question, scale of analysis); (iii) Performance Assessment Methodology (e.g., Direct Measurement techniques, Remote Sensing platforms/indices, Agro-hydrological models, Socio-economic survey methods); (iv) Key Performance Indicators (KPIs) (Specific metrics used, such as efficiency, equity, adequacy, reliability); (v) Key Findings and Conclusions (Main outcomes and limitations identified by the authors); and (vi) Limitations and Future Research Directions (Author-identified limitations of their study and suggestions for future work). To ensure reliability, one author conducted the primary data extraction, and a second author independently verified a random 25% sample of the extracted data for accuracy and completeness.

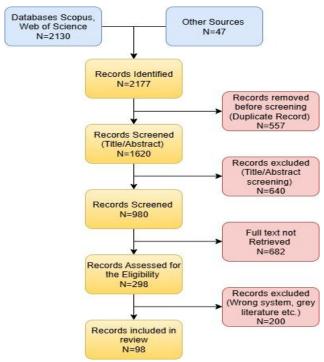


Figure 1. PRISMA 2020 flow diagram for the systematic review.

Given the heterogeneity of the methodologies, scales, and contexts of the included studies, a quantitative meta-analysis was not feasible. Therefore, we applied a qualitative, narrative synthesis approach. This analytical framework involved identifying, grouping, and summarizing findings across studies to develop a coherent narrative. This approach was chosen because it is ideally suited for integrating evidence from diverse study types to identify recurring themes, trace the evolution of methodologies, and identify critical knowledge gaps—all of which were central to our objective of developing a new conceptual framework.

3. The methodological triad in performance assessment: a critical synthesis

The practice of canal performance assessment is built upon a triad of core methodologies: direct field measurement, remote sensing (RS), and agro-hydrological modeling. These approaches are not mutually exclusive competitors; rather, they form a complementary toolkit, each with distinct strengths and limitations. The evolution of the field can be understood through the progression and, more importantly, the integration of these three pillars. Our systematic review found that approximately 55% of the

included studies primarily relied on RS, 25% on modeling, 10% on direct measurement, and 15% employed integrated/hybrid approaches. A key operational approach for combining these methods in practice, particularly in research settings, involves data assimilation, where satellite-derived observations (e.g., ETa, soil moisture, LAI) are used to calibrate and update agro-hydrological models, improving their accuracy and predictive power (Han et al., 2019; Kumar et al., 2019). Comparative Analysis of Core Performance Assessment Methodologies is summarized in Table 2.

3.1. Foundational approaches: the role and limitations of Direct Measurement

Direct field measurement is the bedrock of performance assessment, providing the essential "ground truth" against which all other methods are ultimately validated. This approach involves the physical measurement of key variables within the canal command area, such as canal discharges using flow measurement structures, crop vield samples from designated plots, and socioeconomic data through farmer surveys. This highfidelity, localized data is indispensable for calculating the classical performance indicators that defined the field for decades, including hydraulic metrics like conveyance

application efficiency, and service delivery metrics like adequacy, equity, and dependability (Bantero et al., 2011). Seminal studies, such as that by Molden and Gates (1990), utilized field data to establish quantitative benchmarks for these indicators, creating a standardized basis for comparison. Subsequent work by Bos et al. (1991) in Argentina assessed distribution accuracy, and Burt & Styles (1998) compared multiple systems using a broad set of internal and external indicators. Later, Molden et al. (1998) introduced economic indicators for strategic cross-system comparisons.

Throughout the 2000s, researchers expanded on this foundation. Studies combined field data with economic metrics in Pakistan (Tahir & Habib, 2000), used soil-water balance techniques in Spain (Isidoro et al., 2004), and applied the Penman-Monteith equation to assess tertiarylevel performance in Mali and Turkey (Korkmaz et al., 2009; Vandersypen et al., 2006). These field-based methods provide high-fidelity, localized data indispensable for calculating classical performance indicators (Mishra et al., 2023; Nigam et al., 2023a; Somda et al., 2020). Despite its precision, the direct measurement approach is constrained by significant practical limitations. It is exceptionally resource-intensive, requiring substantial investment in time, labor, equipment, which often makes prohibitively expensive for routine or large-scale applications. Consequently, its use is typically restricted to smaller, targeted case studies or to the higher hierarchical levels of a system, such as the main and secondary canals, where measurement points are fewer (Bastiaanssen & Bos, 1999; Jiang et al., 2015). This approach fundamentally struggles to capture the vast spatial heterogeneity of water use and crop production across thousands of individual farm plots within a large command area and is illsuited for the kind of continuous, real-time monitoring required for dynamic operational management (Gowing, 1998).

The field is actively evolving to address these constraints. To reduce costs and enhance sustainability, particularly in low-income countries and data-scarce regions, reviewed studies demonstrate innovative strategies such as the development of low-cost, open-source flow

al., sensors (Obaideen et 2022), implementation of farmer-led participatory monitoring initiatives (Namara et al., 2010), and the use of mobile applications for simplified data collection (Cerjak et al., 2025). In the context of climate change and the growing need for realtime water management, traditional field-based data collection is increasingly integrated into dynamic monitoring frameworks. Examples from the reviewed literature include Supervisory Control and Data Acquisition (SCADA) systems that feed real-time sensor data into operational models for dynamic gate control and water ordering (Abhilash et al., 2022), and smartphonebased applications allowing water users to report water availability and demand, integrating into management dashboards (Cerjak et al., 2025). These advancements demonstrate how digitized field data can support responsive decisionmaking. Consequently, the consensus is that direct measurements are most practical at higher hierarchical levels of an irrigation system and remain essential for validating other, more scalable assessment methods.

3.2. The spatial revolution: advances in Remote Sensing for command area monitoring The advent of satellite-based remote sensing (RS) revolutionized performance assessment by overcoming the scale limitations of direct measurement. RS provides a synoptic, spatially continuous view of the entire command area, enabling objective and repeatable monitoring (Bastiaanssen & Bos, 1999). The technological evolution in this domain has been rapid. Early applications relied on vegetation indices like the Normalized Difference Vegetation (NDVI), derived from optical sensors, to map crop types, assess vegetation health, and monitor the extent of irrigated areas (Amarasinghe et al., 2021; Nikam et al., 2020). A major leap forward came with the widespread application of thermal infrared data to drive Surface Energy Balance (SEB) models, such as SEBAL (Surface Energy Balance Algorithm for Land) (Derardia et al., 2024). These models estimate actual evapotranspiration (ETa), the total water consumed by evaporation and plant transpiration, which serves as a direct, spatially explicit measure of water use and is a critical input for

calculating water productivity (Mekonnen et al., 2024; Waqas et al., 2021).

There are many studies observed during the timeframe considered. The performance carried out in South Asia with analyzing water productivity using SEBAL Eta calculation (Bastiaanssen et al., 2003; Sakthivadivel et al., 1999). The studies carried out with the different input data, like MODIS (El-Agha et al., 2011), Landsat and SPOT (Kharrou et al., 2013), LISS-III (Kumar et al., 2014), and Sentinel-2 (Mekonnen et al., 2024), for performance analysis.

The current state-of-the-art is characterized by increasingly powerful and accessible platforms that are transforming assessment capabilities:

- High-resolution optical and thermal data: The Copernicus program's Sentinel-2 constellation provides freely available optical imagery at a high spatial resolution (10 m) and frequent revisit time (approx. 5 days). This enables monitoring at the individual field scale, allowing for the derivation of cropspecific parameters like the basal crop coefficient (Kcb) and the precise estimation of crop water requirements across diverse and fragmented agricultural landscapes Hachimi et al., 2022; Er-Rami et al., 2021; Maselli et al., 2020). Future missions like the Copernicus Land Surface **Temperature** Monitoring (LSTM) mission promise to deliver high-resolution thermal data, which will further enhance the accuracy of ET estimation and crop stress detection (Derardja et al., 2024; Mekonnen et al., 2024).
- Integrated water accounting platforms: The Food and Agriculture Organization's (FAO) WaPOR portal (https://data.apps.fao.org/wapor/) represents a paradigm shift in data accessibility. It provides open-access, continental-scale datasets on key performance variables, including ETa, biomass production, and water productivity, derived satellite data. This democratizes performance assessment, empowering local water managers, researchers, and even farmer associations to conduct consistent and standardized benchmarking of their systems without requiring extensive technical expertise in RS data processing (Blatchford et al., 2020).

Case studies using WaPOR have demonstrated its utility in assessing indicators like adequacy, equity, and uniformity across large schemes (Amsalu & Mulu, 2025; Chukalla et al., 2022; Tiruye et al., 2023). However, our review indicates that while these products hold great potential and are widely used in research, their effective day-to-day application by Water User Associations (WUAs) or local irrigation managers remains limited in many regions. Key reported barriers to knowledge transfer from research to practice include a lack of technical capacity at the local level, insufficient integration with existing decisionsupport systems, and inadequate training programs (Blatchford et al., 2020; Khaspuria et al., 2024).

Despite these advances, challenges remain. Optical and thermal sensors are limited by cloud cover, which can create significant data gaps, particularly in monsoon climates (Li et al., 2025; Uday et al., 2025). Our review assessed the impact of these limitations on reliability, identifying alternative approaches in the literature such as the use of Synthetic Aperture Radar (SAR) data (e.g., from Sentinel-1), which can penetrate clouds and provide all-weather monitoring for soil moisture and flood mapping (Mkhwenkwana et al., 2025). Furthermore, data fusion techniques, combining optical with SAR or other sensor types, and spatio-temporal gapfilling algorithms are presented as promising methods for generating more complete and reliable datasets (Mao et al., 2023), thus mitigating the impact of cloud limitations. All RS-derived products require robust atmospheric correction and, crucially, periodic groundtruthing with field measurements to ensure their accuracy and local validity. Our analysis suggests that while ground-truthing is acknowledged as important, the extent and scale of field data used to validate RS outputs vary. While many research-oriented studies emphasized rigorous validation against comprehensive field data (e.g., flux towers, crop coefficient) (Alataway et al., 2019; Xue et al., 2021), a significant number of practical applications, especially those relying on publicly available, pre-processed products like WaPOR, often used less intensive or assumed

al.. validation (Blatchford 2020). Encouragingly, rather than focusing on single indicators, our review identified integrative frameworks that combine multiple RS-derived indicators crop classification. (e.g., evapotranspiration, biomass production, and equity in water distribution) into coherent multicriteria performance assessment systems. Examples include multi-indicator dashboards and spatially explicit water accounting models that are fed entirely by RS data (Chukalla et al., 2022; Han et al., 2019; Zafar et al., 2021).

3.3. The predictive frontier: Agro-hydrological modeling for scenario analysis

The third pillar of the methodological triad is agro-hydrological modeling. Models such as SWAP, SWAT, CROPWAT, AquaCrop, Hydrus, etc, are powerful analytical tools that simulate the complex, dynamic interactions within the soil-water-atmosphere-plant continuum. While RS excels at observing the current state of a system, the unique strength of modeling lies in its predictive capability. Models allow analysts to move beyond assessing past performance to exploring a range of "what-if" scenarios, making them indispensable for planning and strategic management (Uniyal & Dietrich, 2021).

Key applications in performance assessment include estimating spatially distributed crop yield, crop water requirements, and analyzing the components of the water balance (e.g., quantifying non-beneficial losses like deep percolation and runoff) (Woznicki et al. 2015). Critically, evaluating the potential impacts of future climate change on water availability, demand, and impact on performance under water stress conditions (Basukala et al., 2024; Li & Ren, 2019; Liu et al., 2018). These models can simulate how a system might perform under projected future climate scenarios (e.g., from CMIP6 models), thereby testing the efficacy of various adaptation strategies before they are implemented (Rudraswamy & Umamahesh, 2024). Our review identified several studies that demonstrated the application of these approaches in low-income countries and data-scarce regions by utilizing globally available datasets for soil and weather and by incorporating participatory methods to estimate key management parameters, thus making robust modeling feasible under such constrained conditions (Basukala et al., 2024; Kaini et al., 2024; Mishra et al., 2023).

The most powerful modern application of these models lies in their synergy with remote sensing. The assimilation of satellite-derived data, such as ETa or Leaf Area Index (LAI), to calibrate and validate model parameters has been shown to dramatically improve their spatial accuracy and reduce predictive uncertainty (Han et al., 2019; Niu et al., 2018; Van Dam et al., 2006). This integration combines the observational power of RS with the process-based understanding and predictive capacity of models. However, the use of agro-hydrological models is not without its challenges. They are often data-intensive, requiring extensive inputs on soil, climate, and crop parameters for proper setup and calibration (Unival et al. 2019). The process parameterization can be complex, and all models contain inherent uncertainties that must be carefully quantified and communicated to endusers.

4. Discussion: towards an integrated, forward-looking assessment framework

The synthesis of the methodological triad reveals a clear trajectory towards more spatially comprehensive and predictive assessments. However, it also exposes a fundamental limitation: a purely technical evaluation, no matter how advanced, is insufficient to diagnose and solve the persistent underperformance of many canal systems. The most sophisticated remote sensing algorithm can quantify inequity in water distribution, but it cannot explain why that inequity exists. The answer often lies not in the physics of water flow, but in the complex interplay of institutions, economics, and human behavior. A truly effective assessment framework must therefore bridge this technical-social divide and be forward-looking, accounting for the profound challenges of climate change and the opportunities presented by emerging technologies like AI.

4.1. Bridging the technical-social divide: incorporating Institutional and Socio-economic dimensions

A common metaphor in development is that of "hardware" and "software." In canal irrigation, the physical infrastructure—dams, canals, and gates is the hardware. The institutions, governance structures, policies, and social norms that dictate how that hardware is used constitute the software (CWC, 2002). Decades of experience have shown that even the most well-designed hardware will fail if the software is dysfunctional. Technical performance indicators, such as low delivery efficiency or poor equity, are often symptoms of deeper, systemic failures in this institutional software (Amarasinghe et al., 2021).

A systematic review of the literature reveals a consistent set of non-technical barriers that plague canal systems globally, which can be categorized as follows:

- Financial barriers: The most frequently cited barrier is a chronic lack of funding for operation and maintenance (O&M). This stems from insufficient government allocations, coupled with a poor system of cost recovery from users. Water User Associations (WUAs) are often unable to collect adequate water fees, rendering them financially unviable and incapable of performing routine maintenance, leading to a downward spiral of infrastructure decay and declining service quality (Amarasinghe et al., 2021; Nigam et al., 2023b; Zafar et al., 2021).
- Legal and Institutional barriers:
 Performance is often hampered by an inadequate or ambiguous legal framework governing water rights, the responsibilities of WUAs, and the process of irrigation management transfer from the state to users. Without clear and enforceable rules for water distribution and conflict resolution, political interference and capture of resources by

- powerful elites can become rampant, undermining any attempt at equitable management (Nigam et al., 2023b).
- Capacity and Social **Barriers:** effectiveness of WUAs and irrigation agencies is frequently limited by a lack of technical and managerial capacity. Insufficient training in financial management, water scheduling, and conflict resolution weakens these institutions from within (Nigam et al., 2023b). Furthermore, social dynamics, including preexisting inequalities, lack of trust between farmers and officials, and internal disputes over water allocation, can paralyze collective action and render even well-structured WUAs ineffective (Mwadzingeni et al., 2022).

Therefore, a modern performance assessment must adopt a mixed-methods approach that integrates quantitative technical data with qualitative institutional and socio-economic analysis (Mohammedshum et al., 2023). This creates a multi-layered diagnostic process. For example, remote sensing might first identify a "hotspot" of low water productivity in a tail-end distributary. Agro-hydrological modeling could then test whether this is due to insufficient water supply or other agronomic factors. Finally, onthe-ground institutional analysis, through farmer surveys and stakeholder workshops, would diagnose the root cause: is it a result of a broken control gate (a technical problem), illegal upstream water abstraction (a governance problem), or the collapse of the local WUA's fee collection system (a financial and social problem)? Only by integrating these perspectives can the correct problem be diagnosed and the appropriate intervention be designed. This multilayered diagnostic process is central to the proposed integrated socio-technical assessment framework (Figure 2). As depicted, framework integrates insights from Methodological Triad with Institutional & Socio-Economic Analysis.

Table 2. Comparative analysis of core performance assessment methodologies.

Table 2. Comparative analysis of core performance assessment methodologies.							
Attribute	Direct Measurement	Remote Sensing	Agro-hydrological modeling	Integrated approaches (Hybrid)			
Key outputs	Point/local measurements of flow, yield, water quality; Survey data.	Spatially continuous maps of crop type, vegetation health (NDVI), actual water use (ETa), and water productivity.	Spatially distributed estimates of water balance components, crop water demand, yield, and Future scenario predictions.	Holistic performance dashboards combining ground truth, spatial patterns, and future projections; Actionable insights for dynamic management.			
Spatial scale	Point to field/tertiary canal level.	Field to command area, basin, and continental scale.	Field to command area and basin scale.	Field to basin scale, leveraging strengths of all components.			
Temporal scale	Intermittent (campaign-based) to continuous (at select points).	Periodic (satellite revisit time, e.g., 5-16 days); subject to cloud cover.	Continuous simulation (e.g., daily time-step) for historical and future periods.	Near real-time to continuous historical and future analysis, filling data gaps.			
Data requirements	Low initial data, but high for ongoing measurement (field crews, equipment).	Satellite imagery, meteorological data, and ground-truthing data for validation.	Extensive input data: climate, soil properties, crop parameters, management practices, and canal network data.	Integrates all data types; benefits from data sharing and interoperability.			
Cost/resource intensity	High operational cost (labor, travel, equipment).	Low data acquisition cost (for public data), moderate-to-high expertise required for processing.	High initial setup cost (data collection, calibration), low cost for subsequent simulations.	Moderate initial investment (platforms, training) but highest long-term value for actionable insights.			
Key strengths	Provides "ground truth" data; High accuracy at the point of measurement; Can measure variables not visible from space (e.g., groundwater levels, institutional factors).	Excellent spatial coverage; Objective and repeatable; Can monitor inaccessible areas; Enables historical analysis and benchmarking.	Predictive capability for scenario analysis (e.g., climate change, policy changes); Simulates unseen processes (e.g., deep percolation).	Overcomes individual limitations; provides holistic, multidimensional, and actionable insights; best for dynamic, adaptive management.			
Critical limitations	Poor spatial representation; Laborand time-intensive; Impractical for large-scale, continuous monitoring.	Limited by cloud cover; Indirect measurement requires validation; Can be less accurate for certain variables; Temporal resolution can be a constraint.	High data dependency; Model structure and parameter uncertainty; Requires significant expertise for calibration and validation.	Requires significant technical capacity and interdisciplinary expertise for setup and maintenance; Challenges in integrating diverse data formats.			
Uncertainty considerations	Low inherent uncertainty at the specific measurement point, but high when extrapolating spatially. Reliability is heavily dependent on sampling design.	Moderate. Main sources: atmospheric correction, sensor calibration, model parameterization.	The highest potential uncertainty due to input data, model structure, and parameterization.	Aims to reduce overall uncertainty by cross-validating and complementing data sources, though it introduces integration complexities.			
Applicability in Low-resource contexts	Feasible with targeted, optimized sampling, low-cost sensors, and participatory monitoring.	High potential with free datasets (Sentinel, WaPOR), but requires capacity building for data processing and interpretation.	Feasible with global datasets and participatory parameterization, but high initial setup expertise is required.	Offers the most promising long-term value for money after initial capacity building and system setup.			

This framework is operationalized through a sequential, explanatory mixed-methods design. Specific tools include geospatial analysis platforms (e.g., QGIS, Google Earth Engine) for

RS data, simulation models (e.g., SWAT, AquaCrop) for biophysical analysis (Han et al., 2019; Zafar et al., 2021), and structured qualitative methods like semi-structured

interviews, focus group discussions, and Participatory Rural Appraisal (PRA) for socioinstitutional insights (Makin, 2023). integration of quantitative and qualitative data can occur through "joint displays," where, for example, a map of RS-derived water inequity is overlaid with key themes from farmer interviews, creating a unified diagnostic narrative (Azari & Rizi, 2021; Zafar et al., 2021). This framework, while robust, emphasizes context-sensitivity; its application requires adaptation to local socioeconomic, institutional, and climatic conditions to avoid being overly generic.

4.2. Assessing for resilience: performance evaluation in the context of Climate change

Traditional performance assessment is largely a retrospective exercise, evaluating how efficiently a system operated in the past. In an era of accelerating climate change, this is no longer sufficient. Assessment must become prospective, evaluating a system's capacity to perform under future conditions of increased uncertainty and stress. The goalposts are shifting from optimizing for historical efficiency to designing for future resilience (Mwadzingeni et al., 2022).

Climate change is projected to impact canal systems in multiple ways: altering the volume and timing of water availability due to changes in precipitation and snowmelt patterns; increasing crop water demand due to higher temperatures and longer growing seasons; and raising the risk of damage to physical infrastructure from more frequent and intense extreme weather events, such as floods and droughts (Mdemu et al., 2025).

Consequently, future performance assessments must incorporate new indicators designed to measure resilience and adaptive capacity:

• System robustness: This metric assesses the ability of the physical infrastructure and its operational rules to maintain function across a wider range of hydrological variability than historically experienced. Measurable aspects

- include the frequency and duration of water delivery failures under stress scenarios, the capacity of infrastructure to withstand extreme events without catastrophic breakdown, and the ability of a system to recover its pre-stress performance within a defined timeframe (Kazem Shahverdi, 2025; Krishan et al., 2018).
- Adaptive capacity: This evaluates the ability of the system's human components, farmers, WUAs, and government agencies to learn, innovate, and adjust management practices in response to evolving climatic signals and socio-economic conditions (Mwadzingeni et al., 2022). Metrics could involve the speed of policy adjustment, adoption rates of climatesmart agriculture technologies, diversification of water sources, or the institutional flexibility to reallocate water rights during scarcity (Gamage et al., 2024; Wakweya, 2023).

Agro-hydrological models are the primary tools for this forward-looking assessment. By driving models with downscaled climate projections from General Circulation Models (e.g., CMIP5 or 6), analysts can simulate future system performance and test the effectiveness of various adaptation strategies, such as changing cropping patterns, investing in water storage, or modifying operational rules (Basukala et al., 2024; Kaini et al., 2024; Liu et al., 2018). The inherent uncertainties in climate projections, model parameters, and input data are critical and must be systematically addressed. This is proposed through rigorous uncertainty quantification techniques such as sensitivity analysis, probabilistic scenario analysis, and ensemble modeling, providing a range of possible outcomes rather than single predictions (FAO, 2013; Hussain et al., 2025). Incorporating these uncertainties into decision-making involves presenting probabilities of different outcomes to stakeholders, enabling risk-informed planning and the identification of robust solutions that perform well across a spectrum of plausible futures.

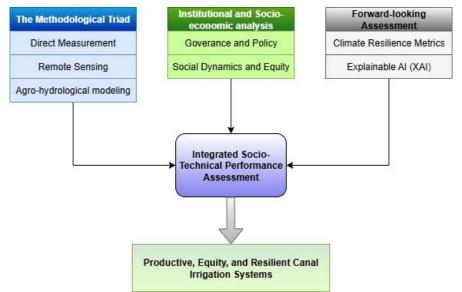


Figure 2. The proposed Integrated Socio-technical assessment framework for Canal irrigation systems.

4.3. The next technological wave: the role of AI and Machine Learning

Artificial Intelligence and Machine Learning (AI/ML) represent the next frontier in the evolution of canal system management, offering the potential to move from passive performance monitoring to active, intelligent, and optimized operations. While still an emerging field for large-scale canal networks, applications at the field and sub-system level demonstrate significant promise.

Key applications of AI/ML relevant to canal performance include:

- Predictive analytics: ML models, such as Artificial Neural Networks (ANNs), Random Forests (RF), and Support Vector Machines (SVMs), have proven highly effective at forecasting key variables like irrigation water demand, canal flow rates, and soil moisture, often with greater accuracy and computational efficiency than traditional process-based models (Belarbi & El Younoussi, 2025; Younes et al., 2024).
- Optimization of operations: Algorithms can be used to optimize water allocation and delivery schedules across an entire canal network. By processing real-time data on supply, demand, and system constraints, these tools can recommend gate operations that maximize objectives like overall water

productivity or equity in distribution (Shahverdi, 2025).

• Data fusion for decision support: The true power of AI lies in its ability to integrate and learn from diverse, large-scale datasets. Future decision support systems will fuse real-time data streams from multiple sources—remote sensing platforms, in-field IoT sensors, weather forecasts, and market prices to provide comprehensive, data-driven recommendations to both canal managers and farmers (Farig et al., 2025).

The integration of these technologies, however, has profound governance implications. An AI system designed solely to optimize for water productivity might inadvertently recommend water allocation strategies that are technically efficient but socially inequitable, for example, by prioritizing the high-value cash crops of already wealthy farmers over the subsistence food crops of poorer, tail-end users. This raises a critical future challenge: designing "socio-technically aware" AI systems that can optimize for multiple, sometimes competing, objectives, including equity, environmental sustainability, and social justice.

Safeguarding social equity and inclusion of vulnerable groups within this integrated framework requires several mechanisms: (1) establishing explicit ethical guidelines and regulatory frameworks for AI in water

management; (2) implementing participatory design processes for AI tools that actively involve diverse stakeholder groups, especially vulnerable farmers, to ensure their needs and values are reflected; (3) integrating equity-focused metrics (e.g., water access disparity, distribution of benefits) directly into AI's objective functions and monitoring frameworks; and (4) ensuring transparent and explainable AI (XAI) outputs to build trust and allow for accountability (Maggo, 2025; Zhu et al., 2022).

The performance assessment of the future will therefore need to evaluate not only the performance of the canal system itself but also the fairness, transparency, and accountability of the algorithms that help to govern it. Key research frontiers include the development of large, highquality training datasets for canal systems, improving the transferability of models across different regions, and advancing the field of explainable AI (XAI) to build trust and facilitate adoption among stakeholders (Zhu et al., 2022). The overall adaptability and transferability of this proposed framework (Figure 2) across diverse settings (socio-economic, institutional, climatic) is ensured by its multi-faceted and adaptive nature. It is not a rigid, one-size-fits-all solution but a diagnostic approach. Its context-sensitivity across the literature (Section 4.1), is that technical sophistication alone is insufficient. The persistent gap between potential and actual performance in many of the world's canal systems is primarily a function of deep-seated financial, institutional, and social barriers. Effective and sustainable canal management, therefore, demands an integrated assessment framework that synthesizes robust technical methodologies with a nuanced understanding of socio-institutional dynamics, prepares for the future by incorporating climate resilience, and harnesses the potential of emerging AI technologies. This integrated framework directly emerges from the synthesis of findings across Sections 3 and 4, which collectively reveal the necessity of combining disparate technical and social methods for holistic problem diagnosis and future-oriented solutions.

5.2. Implications for policy and practice

The findings of the review offer several actionable recommendations for those tasked

is inherent in the qualitative data collection component (interviews, PRA), which directly assesses local institutional and social conditions, and in the flexible application of remote sensing and modeling tools, which can be calibrated to local agro-climatic specificities. This allows the framework to identify universally relevant challenges while still tailoring interventions to unique local contexts.

5. Conclusion

5.1. Recapitulation of findings

This systematic review has systematically charted the evolution of performance assessment in canal irrigation systems, tracing its path from a narrow focus on hydraulic efficiency to the multidisciplinary complex, challenge represents today. The analysis confirms a clear progression in technical methodologies, from labor-intensive direct measurements to the vast spatial reach of remote sensing and the predictive power of agro-hydrological modeling. The stateof-the-art lies not in choosing one method, but in their synergistic integration, as evidenced by the increasing adoption of hybrid approaches discussed in Section 3. However, the central argument of the review, unequivocally supported by the consistent non-technical barriers identified with managing, funding, and regulating canal irrigation systems, strongly supported by the evidence reviewed in Sections 3 and 4:

- Invest "Software" in alongside "Hardware": Policymakers and funding agencies should shift from a model that prioritizes investment physical infrastructure ("hardware") to one that gives equal weight to "software." This means coinvesting in strengthening Water User Associations, developing transparent and enforceable water allocation policies, and building the technical and managerial capacity of both farmers and agency staff. This recommendation is a direct consequence of the widespread evidence of non-technical barriers detailed in Section 4.1.
- Adopt a tiered, diagnostic assessment approach: Irrigation managers should adopt a multi-scale assessment strategy. Broad-scale, routine monitoring can be conducted cost-effectively using open-access remote sensing

tools like FAO's WaPOR to identify systemwide trends and pinpoint "hotspots" of underperformance. These findings should then trigger more intensive, targeted diagnostics at the local level, using a combination of direct measurement and socio-economic analysis to understand the specific root causes of the identified problems. This approach directly operationalizes the mixed-methods integration described in Section 4.1.

• Mainstream Climate resilience into planning: Performance assessment must become a forward-looking exercise. All new irrigation projects and modernization plans should be explicitly evaluated for their resilience to future climate change impacts,

using scenario-based modeling to test the robustness of infrastructure and the adaptability of management plans. This is a crucial implication drawn from the discussion on climate change impacts and resilience assessment in Section 4.2.

5.3. A structured agenda for future research

This study identifies several critical research gaps and proposes a structured agenda to guide future scientific inquiry in the field, as summarized in Table 3. The goal is to move beyond incremental improvements in individual methods and toward a more holistic and impactful science of performance assessment.

Table 3. Identified research gaps and proposed future directions.

			un ections.
Thematic	Identified gap	Key research questions	Potential methodologies
area			
Socio-		How can institutional performance (e.g.,	
Technical Integration	methods for integrating	governance quality, conflict resolution effectiveness) be quantified and causally linked	Development of composite sociotechnical performance indices;
integration			
		to technical outcomes like water productivity and	-
	technical metrics.	equity? How can participatory assessment	
		methods be rigorously combined with remote sensing data?	physical variables.
Climate	Resilience and adaptive	What are robust, measurable, and transferable	Dynamic vulnerability mapping;
Resilience	capacity are well-	indicators of adaptive capacity for canal irrigation	Agent-based modeling to simulate
Assessment	understood concepts but	systems? How does institutional flexibility	farmer adaptation behavior under
	are rarely quantified as	influence a system's ability to cope with climate-	climate stress; Time-series analysis
	part of routine	induced water shocks?	of system performance in response
	performance		to historical climate extremes.
	assessments.		
Advanced	Need for robust	How can data fusion techniques synergistically	Development of multi-sensor data
Remote		combine optical, thermal, and radar (e.g., SAR)	
Sensing	resolution ET products	data to provide all-weather, high-resolution	long-term flux tower validation sites
	across diverse crop types	estimates of evapotranspiration and soil	in under-represented regions; Use of
	and agro-ecological	moisture?	Unmanned Aerial Vehicles (UAVs)
	zones.		for ultra-high-resolution ground-
			truthing.
AI and	Most AI/ML research is	How can explainable AI (XAI) be used to develop	Development of hybrid models
Machine		transparent and trusted decision support systems	
Learning	scale; applications for	for canal operators? How can reinforcement	simulation; Application of XAI
		learning be applied to train models for dynamic,	
		real-time canal gate control? What are the equity	
	user canal networks are	implications of AI-driven water allocation, and	optimization algorithms that
	limited.	how can fairness be built into optimization	incorporate equity and
		algorithms?	environmental constraints.

This structured agenda, presented in Table 3, clearly articulates a path forward by translating identified gaps into specific, actionable research questions and proposing potential methodologies. This provides a focused roadmap for future scientific inquiry, aiming to bridge the critical gaps identified in the review through targeted methodological advancements.

5.4 Limitations of the review

The current review offers a comprehensive synthesis; it is important to acknowledge certain limitations that bound its scope and findings. Our systematic search was restricted to specific English-language databases, which introduce a language bias and exclude relevant literature published in other languages or less accessible grey literature. Furthermore, the qualitative nature of this synthesis, while robust for identifying thematic trends, did not include a quantitative meta-analysis. This means we focused on synthesizing concepts and methodological approaches rather than statistically comparing quantitative performance indicators across studies. Finally, while we discuss the generalizability of the proposed framework, it is ultimately a conceptual model whose practical implementation will require careful adaptation to the unique socio-economic, institutional, and climatic contexts of diverse irrigation systems, as highlighted in Section 4.

Author Contributions:

Mohansing Rajaput: Collection and segregation of literature, writing, and editing. Abhilash Ramadasa: Segregation of literature, Writing, reviewing, and editing. Basavanand M. Dodamani: Review, editing, and supervision.

Conflicts of interest:

The authors of this article declared no conflict of interest regarding the authorship or publication of this article.

Data availability statement:

Data sharing does not apply to this article, as it is a review paper and no new datasets were generated or analyzed. All studies and reports analyzed during this review are publicly available and have been cited in the text and listed in the References section.

References

- Abhilash, R., Basappa, V., Chakragiri, S. V., & Patankar, D. B. (2022). Geospatial Approach for Integrated Command Area Management. Journal of Irrigation and Drainage Engineering, 148(4), 1–11. doi: 10.1061/(asce)ir.1943-4774.0001659
- Alataway, A., Al-Ghobari, H., Mohammad, F., & Dewidar, A. (2019). Lysimeter-Based Water Use and Crop Coefficient of Drip-Irrigated Potato in an Arid Environment. Agronomy, 9(11), 756. doi: 10.3390/agronomy9110756
- Amarasinghe, U. A., Sikka, A., Mandave, V., Panda, R. K., Gorantiware, S., Chandrasekharana, K., & Ambast, S. K. (2021). A re-look at canal irrigation system performance: a pilot study of the Sina irrigation system in Maharashtra, India. Water Policy, 23, 114–129. doi: 10.2166/wp.2020.291
- Amsalu, Y., & Mulu, A. (2025). Performance evaluation of irrigation scheme at Dimama Angerf Abay, Awi Zone, Amhara region, Ethiopia. Discover Water, 5(1), 40. doi: 10.1007/s43832-025-00224-y
- Azari, M. D., & Rizi, A. P. (2021). Challenges of irrigation water distribution from the viewpoint of socio-hydraulic relations*. Irrigation and Drainage, 70(5), 1273–1286. doi: 10.1002/ird.2596
- Bantero, B., Ayana, M., & Awulachew, S. (2011). Assessment of Irrigation Performance along the Canal Reach of Community Managed Scheme in Southern Ethiopia. Ethiopian Journal of Development Research, 32(1). doi: 10.4314/ejdr.v32i1.68599
- Bastiaanssen, W. G. M., & Bos, M. G. (1999). Irrigation performance indicators based on remotely sensed data: A review of literature. Irrigation and Drainage Systems, 13(4), 291–311. doi: 10.1023/A:1006355315251
- Bastiaanssen, W., Mobin-ud-Din Ahmad, & Zubair Tahir. (2003). Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies. In W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: limits and

- opportunities for improvement (pp. 289–300). CAB International. doi: 10.1079/9780851996691.0289
- Basukala, A. K., Eschenbach, A., & Rasche, L. (2024). Effect of irrigation canal conveyance efficiency enhancement on crop productivity under climate change in Nepal. Environmental Monitoring and Assessment, 196(12). doi: 10.1007/s10661-024-13405-4
- Belarbi, Z., & El Younoussi, Y. (2025). A Review on Optimizing Water Management in Agriculture through Smart Irrigation Systems and Machine Learning. In B. Benhala, A. Lachhab, A. Raihani, M. Qbadou, & A. Sallem (Eds.), ICEGC'2024. E3S Web of Conferences. doi: 10.1051/e3sconf/202560100078
- Blatchford, M., M. Mannaerts, C., Zeng, Y., Nouri, H., & Karimi, P. (2020). Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data. Remote Sensing, 12(18), 2949. doi: 10.3390/rs12182949
- Bos, M. G., & Nugteren, J. (1990). On Irrigation Efficiencies.

 https://www.researchgate.net/profile/Mg-Bos/publication/44399513_On_irrigation_efficiencies_M_G_Bos_J_Nugteren/links/548ec 86e0cf225bf66a633ce/On-irrigation-efficiencies-M-G-Bos-J-Nugteren.pdf
- Bos, M. G., Burton, M. A., & Molden, D. J. (2005). Irrigation and Drainage Performance Assessment Practical Guidelines. https://www.icid.org/Guidelines_Molden2005.pdf
- Bos, M. G., Wolters, W., Drovandi, A., & Morabito, J. A. (1991). The Viejo Retamo secondary canal Performance evaluation case study: Mendoza, Argentina. Irrigation and Drainage Systems, 5(1), 77–88. doi: 10.1007/BF01102778
- Burt, C. M., & Styles, S. W. (1998). Modern Water Control and Management Practices in Irrigation: Impact on Performance. In Proceedings of the Expert Consultation on Modernization of Irrigation Schemes: Past Experiences and Future Options (Issue October).
 - http://www.itrc.org/papers/modernwatercontrol.htm

- Cerjak, M., Medici, M., Faletar, I., Sundeep, J. V., & Canavari, M. (2025). Adoption of mobile-based agricultural extension services: evidence from South India. Journal of Rural Studies, 120, 103851. doi: 10.1016/j.jrurstud.2025.103851
- Chen, H.-Y., Sharma, K., Sharma, C., & Sharma, S. (2023). Integrating explainable artificial intelligence and blockchain to smart agriculture: Research prospects for decision making and improved security. Smart Agricultural Technology, 6, 100350. doi: 10.1016/j.atech.2023.100350
- Chukalla, A. D., Mul, M. L., van der Zaag, P., van Halsema, G., Mubaya, E., Muchanga, E., den Besten, N., & Karimi, P. (2022). A framework for irrigation performance assessment using WaPOR data: the case of a sugarcane estate in Mozambique. Hydrology and Earth System Sciences, 26(10), 2759–2778. doi: 10.5194/hess-26-2759-2022
- CWC. (2002). Guidelines for Performance Evaluation of Irrigation System. https://cwc.gov.in/sites/default/files/guideline s-performance-evaluation-irrigation-system-2002compressed.pdf
- Derardja, B., Khadra, R., Abdelmoneim, A. A. A., El-Shirbeny, M. A., Valsamidis, T., De Pasquale, V., Deflorio, A. M., & Volden, E. (2024). Advancements in Remote Sensing for Evapotranspiration Estimation: A Comprehensive Review of Temperature-Based Models. Remote Sensing, 16(11), 1927. doi: 10.3390/rs16111927
- El Hachimi, J., El Harti, A., Lhissou, R., Ouzemou, J.-E., Chakouri, M., & Jellouli, A. (2022). Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive Agriculture. Agriculture, 12(8), 1168. doi: 10.3390/agriculture12081168
- El-Agha, D. E., Molden, D. J., & Ghanem, A. M. (2011). Performance assessment of irrigation water management in old lands of the Nile delta of Egypt. Irrigation and Drainage Systems, 25(4), 215–236. doi: 10.1007/s10795-011-9116-z
- Elshaikh, A. E., Jiao, X., & Yang, S. hong. (2018). Performance evaluation of irrigation projects: Theories, methods, and techniques.

- Agricultural Water Management, 203, 87–96. doi: 10.1016/j.agwat.2018.02.034
- Er-Rami, M., D'Urso, G., Lamaddalena, N., D'Agostino, D., & Belfiore, O. R. (2021). Analysis of irrigation system performance based on an integrated approach with Sentinel-2 satellite images. Journal of Agricultural Engineering, 52(2). doi: 10.4081/jae.2021.1170
- FAO, & DWFI. (2015). Yield gap analysis of field crops Methods and case studies. https://openknowledge.fao.org/server/api/core/bitstreams/bd44e093-8f41-4b99-875a-1387a1b1dd8d/content
- FAO. (2013). Climate-smart Agriculture Sourcebook Book. https://www.fao.org/3/i3325e/i3325e.pdf
- FAO. (2020). The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. doi: 10.4060/cb1447en
- Farig, M., Shimizu, K., & Hassan, W. H. A. El. (2025). Artificial Intelligence in Agricultural Water Management Research: Literature Review and Research Agenda. International Journal of Advanced Engineering, Management and Science, 11(1), 126–134. doi: 10.22161/ijaems.111.9
- Gamage, A., Gangahagedara, R., Subasinghe, S., Gamage, J., Guruge, C., Senaratne, S., Randika, T., Rathnayake, C., Hameed, Z., Madhujith, T., & Merah, O. (2024). Advancing sustainability: The impact of emerging technologies in agriculture. Current Plant Biology, 40, 100420. doi: 10.1016/j.cpb.2024.100420
- Gowing, J. (1998). Effective Monitoring of Canal Irrigation with Minimum or No Flow Measurement. In Water and the Environment (1st ed.). CRC Press. https://www.taylorfrancis.com/chapters/mono/10.1201/9781482272086-40/effective-monitoring-canal-irrigation-minimum-flow-measurement-john-gowing?context=ubx
- Han, C., Zhang, B., & Chen, H. (2019). Spatially distributed crop model based on remote sensing. Agricultural Water Management, 218(March), 165–173. doi: 10.1016/j.agwat.2019.03.035
- Hussain, I., Khan, M. Z., Rafiq, N., & Bashir, S. (2025). Promoting the Adaptation of Climate-

- Smart Agriculture Practices Among Farming Communities. In Climate Smart Agriculture for Future Food Security (pp. 223–255). Springer Nature Singapore. doi: 10.1007/978-981-96-4499-5 9
- IFPRI. (2019). 2019 Global food policy report. doi: 10.2499/9780896293502
- Isidoro, D., Quílez, D., & Aragüés, R. (2004). Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study. Agricultural Water Management, 64(2), 123–142. doi: 10.1016/S0378-3774(03)00196-3
- Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., & Lucht, W. (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 19(7), 3073–3091. doi: 10.5194/hess-19-3073-2015
- Jiang, Y., Xu, X., Huang, Q., Huo, Z., & Huang, G. (2015). Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agricultural Water Management, 147, 67–81. doi: 10.1016/j.agwat.2014.08.003
- Kaini, S., Harrison, M. T., Gardner, T., & Sharma, A. K. (2024). Comprehensive Assessment of Climate Change Impacts on River Water Availability for Irrigation, Wheat Crop Area Coverage, and Irrigation Canal Hydraulic Capacity of Large-Scale Irrigation Scheme in Nepal. Water (Switzerland), 16(18). doi: 10.3390/w16182595
- Kazem Shahverdi. (2025). Supervised learning to manage irrigation canals' operation. Journal of Water and Irrigation Management, 14(4). https://jwim.ut.ac.ir/article_99940_154e0944 fad77aa4ef8c5aeac8f79eb5.pdf?lang=en
- Kharrou, M. H., Le Page, M., Chehbouni, A., Simonneaux, V., Er-Raki, S., Jarlan, L., Ouzine, L., Khabba, S., & Chehbouni, G. (2013). Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco. Water Resources Management, 27, 4697–4714. doi: 10.1007/s11269-013-0438-5
- Khaspuria, G., Khandelwal, A., Agarwal, M., Bafna, M., Yadav, R., & Yadav, A. (2024).

- Adoption of Precision Agriculture Technologies among Farmers: A Comprehensive Review. Journal of Scientific Research and Reports, 30(7), 671–686. doi: 10.9734/jsrr/2024/v30i72180
- Kori, P., & Umesh, K. B. (2020). Impact of Irrigation Water Shortage on Yield, Income and Employment of Farm Households in Tungabhadra Command Area of Karnataka. Asian Journal of Agricultural Extension, Economics & Sociology, 102–110. doi: 10.9734/ajaees/2020/v38i130302
- Korkmaz, N., Avci, M., Unal, H. B., Asik, S., & Gunduz, M. (2009). Evaluation of the Water Delivery Performance of the Menemen Left Bank Irrigation System Using Variables Measured On-Site. Journal of Irrigation and Drainage Engineering, 135(5), 633–642. doi: 10.1061/(asce)ir.1943-4774.0000053
- Krishan, R., Nikam, B. R., Pingale, S. M., Chandrakar, A., & Khare, D. (2018). Analysis of trends in rainfall and dry/wet years over a century in the Eastern Ganga Canal command. Meteorological Applications, 25, 561–574. doi: 10.1002/met.1721
- Kulkarni, T. (2020). The lucid dream of achieving equitable water distribution in India: A critique. International Journal of Multidisciplinary Research and Growth Evaluation, 1(4), 44–49. doi: 10.54660/.IJMRGE.2020.1.4.44-49
- Kumar, K. A., Reddy, M. D., Uma Devi, M., Narender, N., Neelima, T. L., Ramulu, V., Rao, V. P., & Raghavaiah, R. (2014). Irrigation Performance Assessment of Left Bank Canal, Nagarjuna Sagar Project, India During Rabi Using Remote Sensing and GIS. Agrotechnology, 03(01). doi: 10.4172/2168-9881.1000122
- Kumar, S. V., M. Mocko, D., Wang, S., Peters-Lidard, C. D., & Borak, J. (2019).
 Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States. Journal of Hydrometeorology, 20(7), 1359–1377. doi: 10.1175/JHM-D-18-0237.1
- Li, M., Wang, P., Tansey, K., Guo, F., & Zhou, J. (2025). Improved leaf area index reconstruction in heavily cloudy areas: A

- novel deep learning approach for SAR-Optical fusion integrating spatiotemporal features. International Journal of Applied Earth Observation and Geoinformation, 142, 104745. doi: 10.1016/j.jag.2025.104745
- Li, P., & Ren, L. (2019). Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agrohydrological model: II. Scenario simulation and analysis. Journal of Hydrology, 574(2), 715–732. doi: 10.1016/j.jhydrol.2019.03.034
- Liu, L., Guo, Z., & Huang, G. (2018). Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model. Proceedings of the International Association of Hydrological Sciences, 379, 393–402. doi: 10.5194/piahs-379-393-2018
- Maggo, G. (2025). The Ethics of AI in Water Management. Pani Ki Kahani. https://panikikahani.org/research/The-Ethics-of-AI-in-Water-Management/33863/
- Makin, V. I. W. (2023). ICID Guidelines on Modernization. International Symposium on Pathways and Technologies for Modern Irrigation Services. https://icidciid.org/icid_data_web/25Cong-International-Symposium.pdf
- Mao, Y., Van Niel, T. G., & McVicar, T. R. (2023). Reconstructing cloud-contaminated NDVI images with SAR-Optical fusion using spatiotemporal partitioning and multiple linear regression. ISPRS Journal of Photogrammetry and Remote Sensing, 198, 115–139. doi: 10.1016/j.isprsjprs.2023.03.003
- Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., Magno, R., & Gozzini, B. (2020). Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. International Journal of Applied Earth Observation and Geoinformation, 93, 102216. doi: 10.1016/j.jag.2020.102216
- Mdemu, M., Kissoly, L., Kimaro, E., Bjornlund, H., Ramshaw, P., Pittock, J., Wellington, M., & Bongole, S. (2025). Climate change adaptation benefits from rejuvenated irrigation systems at Kiwere and Magozi schemes in Tanzania. International Journal of

- Water Resources Development, 41(2), 325–349. doi: 10.1080/07900627.2024.2397400
- Mekonnen, Y. G., Alamirew, T., Tadesse, K. B., & Chukalla, A. D. (2024). Monitoring small-scale irrigation performance using remote sensing in the Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, 300. doi: 10.1016/j.agwat.2024.108928
- Mishra, V., Denis, D., Mishra, H., & Kumar, M. (2023). Assessing Irrigation Performance of a Canal Command Area Using Space and Ground Observation. A Case Study of Belan Canal, Prayagraj. In A. Ramdane-Cherif, T. P. Singh, R. Tomar, T. Choudhury, & J. Um (Eds.), Machine Intelligence and Data Science Applications (MIDAS 2022) (pp. 491–505). Springer. doi: 10.1007/978-981-99-1620-7 38
- Mkhwenkwana, A., Matongera, T. N., Blaauw, C., & Mutanga, O. (2025). A critical review on the applications of Sentinel satellite datasets for soil moisture assessment in crop production. International Journal of Applied Earth Observation and Geoinformation, 141, 104647. doi: 10.1016/j.jag.2025.104647
- Mohammedshum, A. A., Mannaerts, C. M., Maathuis, B. H. P., & Teka, D. (2023). Integrating Socioeconomic Biophysical and Institutional Factors for Evaluating Small-Scale Irrigation Schemes in Northern Ethiopia. Sustainability, 15(2). doi: 10.3390/su15021704
- Molden, D. (Ed.). (2013). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan, and Columbo: International Water Management Institute. doi: 10.4324/9781849773799
- Molden, D. J., & Gates, T. K. (1990). Performance Measures for Evaluation of Irrigation-Water-Delivery Systems. Journal of Irrigation and Drainage Engineering, 116(6), 804–823. doi: 10.1061/(ASCE)0733-9437(1990)116:6(804)
- Molden, D., Sakthivadivel, R., Perry, C. J., Fraiture, C. de, & Kloezen, W. H. (1998). Indicators for Comparing Performance of Irrigated Agricultural Systems. Colombo, Sri Lanka: International Water Management

- Institute (IWMI). https://hdl.handle.net/10568/39803
- Murray-Rust, H., & Snellen, W. Bart. (1993). Irrigation system performance assessment and diagnosis. Colombo, Sri Lanka. International Irrigation Management Institute. https://cgspace.cgiar.org/server/api/core/bitstreams/e0aca2cf-0cf2-47e1-8a99-353ff0f69023/content
- Muturi, J. W., Ndehedehe, C. E., & Kennard, M. J. (2025). A review of the use of remote sensing techniques in assessing irrigation water use. Agricultural Water Management, 319, 109759. doi: 10.1016/j.agwat.2025.109759
- Mwadzingeni, L., Mugandani, R., & Mafongoya, P. L. (2022). Socio-demographic, institutional and governance factors influencing adaptive capacity of smallholder irrigators in Zimbabwe. PLOS ONE, 17(8), e0273648. doi: 10.1371/journal.pone.0273648
- Namara, R. E., Hanjra, M. A., Castillo, G. E., Ravnborg, H. M., Smith, L., & Van Koppen, B. (2010). Agricultural water management and poverty linkages. Agricultural Water Management, 97(4), 520–527. doi: 10.1016/j.agwat.2009.05.007
- Nigam, J., Raju, T. B., & Pannala, R. K. P. K. (2023a). Performance Evaluation of Irrigation Canals Using Data Envelopment Analysis for Efficient and Sustainable Irrigation Management in Jharkhand State, India. Energies, 16(14). doi: 10.3390/en16145490
- Nigam, J., Totakura, B. R., & Kumar, R. (2023b). Assessment of Barriers to Canal Irrigation Efficiency for Sustainable Harnessing of Irrigation Potential. Water, 15(14), 2558. doi: 10.3390/w15142558
- Nikam, B. R., Garg, V., Thakur, P. K., & Aggarwal, S. P. (2020). Application of Remote Sensing and GIS in Performance Evaluation of Irrigation Project at Disaggregated Level. Journal of the Indian Society of Remote Sensing, 48(7), 979–997. doi: 10.1007/s12524-020-01128-1
- Niu, J., Liu, Q., Kang, S., & Zhang, X. (2018). The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River basin, Northwest China.

- Journal of Hydrology, 563, 909–926. doi: 10.1016/j.jhydrol.2018.06.062
- Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. doi: 10.1016/j.nexus.2022.100124
- Orkodjo, T. P., Kranjac-Berisavijevic, G., & Abagale, F. K. (2022). Impact of climate change on future availability of water for irrigation and hydropower generation in the Omo-Gibe Basin of Ethiopia. Journal of Hydrology: Regional Studies, 44, 101254. doi: 10.1016/j.ejrh.2022.101254
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. doi: 10.1136/bmj.n71
- Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108, 39–51. doi: 10.1016/j.agwat.2011.08.022
- Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environmental Development, 18, 14–25. doi: 10.1016/j.envdev.2015.12.001
- Rosa, L., & Sangiorgio, M. (2025). Global water gaps under future warming levels. Nature Communications, 16(1), 1192. doi: 10.1038/s41467-025-56517-2
- Rudraswamy, G. K., & Umamahesh, N. V. (2024). Investigating the impact of climate change on irrigation and crop water requirements of Bhadra and Tungabhadra command area: A CMIP-6 GCMs and CROPWAT 8.0 approach. Water Supply, 24(2), 625–642. doi: 10.2166/ws.2024.022
- Sakthivadivel, R., Thiruvengadachari, S., Amerasinghe, U., Bastiaanssen, W. G. M., & Molden, D. (1999). Performance evaluation of the Bhakra Irrigation System, India, using

- remote sensing and GIS techniques. Colombo, Sri Lanka: International Water Management Institute. https://hdl.handle.net/10568/39814
- Schultz, B., Thatte, C. D., & Labhsetwar, V. K. (2005). Irrigation and drainage. Main contributors to global food production. Irrigation and Drainage, 54, 263–278. doi: 10.1002/ird.170
- Small, L. E., & Svendsen, M. (1990). A framework for assessing irrigation performance. Irrigation and Drainage Systems, 4, 283–312. doi: 10.1007/BF01103710
- Somda, W., Tischbein, B., & Bogardi, J. J. (2020). Water use inside inland valleys agro-systems in the Dano basin, Burkina Faso. Water Cycle, 1, 88–97. doi: 10.1016/j.watcyc.2020.06.003
- Tahir, Z., & Habib, Z. (2000). Land and Water Productivity: Trends across Punjab Canal Commands. Colombo, Sri Lanka: International Water Management Institute. https://hdl.handle.net/10568/39235
- Tiruye, A., Ditthakit, P., Pham, Q. B., Wipulanusat, W., Weesakul, U., & Thongkao, S. (2023). Assessing Water Consumption Pattern and Delivery Irrigation Performance Indicators Using the Wapor Portal Under Data-Limited Conditions, Ethiopia. Engineered Science. doi: 10.30919/es1046
- Uday, G., Purse, B. V., Kelley, D. I., Vanak, A., Samrat, A., Chaudhary, A., Rahman, M., & Gerard, F. F. (2025). Radar versus optical: The impact of cloud cover when mapping seasonal surface water for health applications in monsoon-affected India. PLOS ONE, 20(1), e0314033.
 - 10.1371/journal.pone.0314033
- UN. (2022). The sustainable development goals report 2022. In United Nations publication issued by the Department of Economic and Social Affairs. https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf
- UNESCO. (2021). The United Nations World Water Development Report 2021: Valuing Water.
 - https://unesdoc.unesco.org/ark:/48223/pf0000375724

- Uniyal, B., & Dietrich, J. (2021). Simulation of Irrigation Demand and Control in Catchments
 A Review of Methods and Case Studies.
 Water Resources Research, 57(7), 1–21. doi: 10.1029/2020WR029263
- Uniyal, B., Dietrich, J., Vu, N. Q., Jha, M. K., & Arumí, J. L. (2019). Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Science of the Total Environment, 649, 846–865. doi: 10.1016/j.scitotenv.2018.08.248
- Van Dam, J. C., Singh, R., Bessembinder, J. J. E., Leffelaar, P. A., Bastiaanssen, W. G. M., Jhorar, R. K., Kroes, J. G., & Droogers, P. (2006). Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools. International Journal of Water Resources Development, 22(1), 115–133. doi: 10.1080/07900620500405734
- Vandersypen, K., Bengaly, K., Keita, A. C. T., Sidibe, S., Raes, D., & Jamin, J. Y. (2006). Irrigation performance at tertiary level in the rice schemes of the Office du Niger (Mali): Adequate water delivery through over-supply. Agricultural Water Management, 83(1–2), 144–152. doi: 10.1016/j.agwat.2005.11.003
- Wakweya, R. B. (2023). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. Journal of Agriculture and Food Research, 14, 100698. doi: 10.1016/j.jafr.2023.100698
- Waqas, M. M., Waseem, M., Ali, S., Kebede Leta, M., Noor Shah, A., Awan, U. K., Hamid Hussain Shah, S., Yang, T., & Ullah, S. (2021). Evaluating the spatio-temporal distribution of irrigation water components for water resources management using geo-informatics approach. Sustainability (Switzerland), 13. doi: 10.3390/su13158607
- Ward, C., Burt, C., Valieva, S., Shawky, A., Casanova, D., & Meerbach, D. (2024). Innovation and Modernization in Irrigation and Drainage: A Guide to Why, What, and How. World Bank, Washington, DC. https://documents1.worldbank.org/curated/en/099811001272528137/pdf/IDU-5d7c851f-f0c2-4af3-bad1-6a4717b6f888.pdf

- Woznicki, S. A., Nejadhashemi, A. P., & Parsinejad, M. (2015). Climate change and irrigation demand: Uncertainty and adaptation. Journal of Hydrology: Regional Studies, 3, 247–264. doi: 10.1016/j.eirh.2014.12.003
- Xue, J., Anderson, M. C., Gao, F., Hain, C., Yang, Y., Knipper, K. R., Kustas, W. P., & Yang, Y. (2021). Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy. Remote Sensing, 13(17), 3420. doi: 10.3390/rs13173420
- Yapa, L. G. D. S., Rainis, R., Abdullah, A. L., & Hemakumara, G.P.T.S. (2020). Head-tail disparity in irrigation management in Sri Lanka: A review of empirical evidence. Malaysian Journal of Society and Space, 16(4). doi: 10.17576/geo-2020-1604-04
- Younes, A., Elassad, Z. E. A., Meslouhi, O. El, Elassad, D. E. A., & Abdel Majid, E. (2024). The application of machine learning techniques for smart irrigation systems: A systematic literature review. Smart Agricultural Technology, 7, 100425. doi: 10.1016/j.atech.2024.100425
- Zafar, A., Prathapar, S., Bastiaanssen, W., Awan, W. K., Cai, X., & Manunta, P. (2021). Optimization of Canal Management Using Satellite Measurements (0 ed., ADB Briefs). Asian Development Bank. doi: 10.22617/BRF210022-2
- Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. doi: 10.1016/j.eehl.2022.06.001