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Abstract 
This systematic review investigates the evolution of performance assessment in canal irrigation systems globally, 

drawing evidence from Asia, Africa, and Latin America. Adhering to PRISMA guidelines, it synthesized 98 peer-

reviewed studies and key organizational reports published between 1990 and 2025, primarily from Scopus and 

Web of Science. The analysis reveals a clear methodological progression from direct measurements to remote 

sensing (RS) and agro-hydrological modeling, with Artificial Intelligence (AI) now evidenced as an applied tool 

in some assessments, not merely a prospect. A critical insight, however, is that despite these technical 

advancements, persistent underperformance is primarily rooted in deep-seated non-technical (financial, 

institutional, social) barriers. The current review highlights a significant gap: the absence of a unified framework 

systematically integrating these technical and socio-institutional dimensions with forward-looking climate 

resilience. Our primary contribution is a novel, integrated socio-technical assessment framework designed to 

bridge this divide. Distinct from previous reviews, the proposed framework explicitly combines the 

methodological triad, comprehensive socio-institutional analysis, quantifiable climate resilience metrics, and 

mechanisms to ensure social equity in AI-driven management. This adaptable, multi-scale diagnostic tool offers 

an actionable blueprint, applicable from local canal management to national policy levels, that accounts for diverse 

regional data limitations. By enabling more effective problem diagnosis and intervention design, the proposed 

framework provides significant analytical value and actionable lessons for enhancing the productivity, equity, and 

climate resilience of canal irrigation systems, thereby directly advancing Sustainable Development Goals 2 and 6. 
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1. Introduction 

1.1. The enduring challenge 

Canal irrigation systems are a cornerstone of 

global food production. While irrigated land 

constitutes only 20% of global cropland, it is 

responsible for a remarkable 40% of the world's 

food supply, highlighting its profound impact on 

agricultural productivity (Schultz et al. 2005). In 

many arid and semi-arid nations, these systems 

are the lifeblood of agriculture, with irrigation 

accounting for over 90% of total freshwater 

withdrawals (UNESCO, 2021). This intensive 

water use places canal irrigation at the center of a 

critical tension between two of the United 

Nations' Sustainable Development Goals: SDG 2 

(Zero Hunger), which demands increased food 

production, and SDG 6 (Clean Water and 

Sanitation), which calls for sustainable water 

management and improved water-use efficiency 

across all sectors (IFPRI, 2019; UN, 2022). 

 

1.2. The pervasive "performance gap": a 

quantified challenge 

Despite their importance, a persistent and well-

documented "performance gap" exists in many 

canal systems, where actual performance falls 

drastically short of design potential (Molden, 

2013; Ward et al., 2024). This is not a minor issue; 

it is a systemic failure with significant 

quantitative dimensions. Globally, the overall 

efficiency of many canal systems languishes 

between 30% and 50%, meaning that up to 70% 

of the water diverted is lost before reaching the 

crop root zone due to a combination of physical 

losses (seepage, evaporation) and managerial 

inefficiencies (FAO, 2020; Jägermeyr et al., 

2015). This chasm between design and reality is 

starkly illustrated in regions like South Asia, 

where conveyance efficiencies in some large-

scale systems have been measured at less than 

40% (Rasul, 2016) The consequences are direct 

and severe; a yield gap where actual agricultural 

production is 30-50% lower than its potential 

(FAO & DWFI, 2015), inequitable water 

distribution that leaves tail-end farmers with 

chronic shortages, and accelerated infrastructure 

decay (Kori & Umesh, 2020; Kulkarni, 2020; 

Yapa et al., 2020). 

Furthermore, climate change is no longer a future 

threat but a present reality, directly exacerbating 

this performance gap. Recent studies from river 

basins across the world demonstrate tangible 

impacts: a meta-analysis by Woznicki et al. 

(2015) projected that irrigation demands could 

increase by over 40% in some regions due to 

rising temperatures (Woznicki et al., 2015), while 

recent works on changing climate showed a 15% 

reduction in water availability for irrigation 

due to altered precipitation patterns (Orkodjo et 

al., 2022; Rosa & Sangiorgio, 2025). These 

climatic shifts place unprecedented stress on 

already underperforming systems, making 

performance assessment and improvement an 

urgent priority. 

 

1.3. The evolving landscape of performance 

assessment 

The methods used to diagnose and address these 

performance gaps have evolved significantly. 

Early assessments were dominated by a narrow, 

engineering-centric focus on hydraulic efficiency, 

relying on direct, field-based measurements (Bos 

& Nugteren, 1990). A paradigm shift began in the 

late 20th century, marked by the development of 

more holistic evaluation frameworks that 

recognized irrigation systems as complex socio-

technical entities. These foundational 

frameworks broadened the scope of assessment to 

include agricultural, economic, and social 

dimensions, providing the intellectual bedrock 

for modern performance analysis. As 

summarized in Table 1, three frameworks were 

particularly influential in this shift. Small & 

Svendsen (1990) introduced a "nested systems" 

framework, conceptualizing irrigation as a series 

of interconnected systems where the output of 

one (e.g., water delivery) becomes the input for 

the next (e.g., agricultural production), extending 

all the way to the national socio-economic 

system. This highlighted the multifaceted 

purposes of irrigation beyond simple water 

conveyance. Building on this, Murray-Rust & 

Snellen (1993) framed performance assessment 

as a diagnostic tool for management, 

emphasizing the use of outputs to identify 

opportunities for improvement across the entire 

management cycle, rather than as an end in itself. 

Later, Bos et al. (2005) proposed a systematic, 

staged process that aligns the assessment's 

purpose, indicators, and data collection methods, 
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ensuring that evaluations are not only data-

informed but also actionable for managers and 

stakeholders. This evolution in conceptual 

thinking reflects a broader shift in development  

practice from a focus on constructing physical 

infrastructure to a more nuanced understanding of 

the institutions, policies, and human factors that 

govern its success. 

A review of the literature reveals that many prior 

syntheses on this topic have been largely 

narrative, offering fragmented summaries rather 

than a systematic analysis of methodological 

trends and persistent knowledge gaps. For 

instance, reviews like that of Pereira et al. (2012) 

provided on-farm analysis using indicators, while 

Muturi et al. (2025) focused narrowly on specific 

techniques like remote sensing, whereas Elshaikh 

et al. (2018) focused without integrating them 

into a broader socio-technical context. The 

current review addresses this deficiency by 

employing the PRISMA (Preferred Reporting 

Items for Systematic reviews and Meta-

Analyses) methodology to systematically chart 

the evolution from traditional methods to 

modern, technology-driven approaches. 

 

1.4. Research gaps and the emergence of new 

technologies 

Our systematic review, which is global in scope 

but draws on case studies from key irrigated 

regions in Asia, Africa, and Latin America, 

identifies a critical disconnect: the persistence of 

a performance gap is often rooted in the failure to 

integrate technical assessments with the socio-

economic and institutional realities of water 

management. The rise of powerful new 

technologies now offers a pathway to bridge this 

gap. Advanced remote sensing platforms, such as 

the FAO's WaPOR database and high-resolution 

Sentinel-2 satellite imagery, provide 

unprecedented capabilities for monitoring 

agricultural water productivity and crop health 

(Tiruye et al., 2023). Simultaneously, the 

application of Artificial Intelligence (AI) is 

moving from a prospective tool to a demonstrated 

asset. For example, machine learning models are 

now being used to forecast crop water demand 

with high accuracy, enabling more efficient water 

allocation (Younes et al., 2024), while 

explainable AI (XAI) is being used to create 

transparent decision-support tools for irrigation 

managers (Chen et al., 2023; Mdemu et al., 2025). 
Table 1. Summary of Key Performance Evaluation Frameworks. 

Framework Core Concept Primary Objective Key Contribution 

Small & 

Svendsen 

(1990) 

Nested Systems 

To understand the interconnected 

purposes of irrigation, from water 

delivery to socio-economic impact. 

Broadened the definition of 

performance beyond hydraulic 

efficiency to include agricultural and 

economic outcomes. 

Murray-Rust & 

Snellen (1993) 

Management-

Oriented 

Diagnosis 

To use performance data as a 

diagnostic tool for continuous 

improvement in management, 

operations, and maintenance. 

Shifted the focus from a static audit 

of outputs to a dynamic process for 

improving management 

effectiveness. 

Bos et al. 

(2005) 

Systematic 

Staged 

Assessment 

To provide a practical, purpose-

driven process for designing and 

implementing actionable 

performance assessments. 

Offered a structured, logical 

framework that links assessment 

purpose to methodology and ensures 

results are relevant to stakeholders. 

1.5. Objectives and contribution of the review 

Given that fragmented technical assessments are 

insufficient for building the resilient irrigation 

systems required for the future, the objective of 

the review is twofold. First, it is to systematically 

synthesize the evolution of performance 

assessment methodologies, charting the 

progression from traditional techniques to 

modern remote sensing and AI-driven 

approaches. Second, by highlighting the critical 

gap this synthesis reveals, namely, the persistent 

disconnect between technical metrics and socio-

institutional realities, this review's primary 

contribution is to propose a novel, integrated 

socio-technical assessment framework. This 

framework offers an actionable blueprint that 

leverages modern technologies to guide the 

development of more productive, equitable, and 

climate-resilient canal irrigation systems. 
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2. Systematic review methodology 

2.1. Review protocol 

To ensure methodological transparency, rigor, 

and replicability, this systematic review was 

conducted in accordance with the PRISMA 2020 

statement (Page et al., 2021). The adoption of this 

formal protocol directly addresses a critical 

weakness identified in previous versions of this 

work, which lacked a structured and defensible 

review methodology. The review protocol was 

designed a priori to answer four primary research 

questions: 

1- How have the primary methodologies for 

assessing canal irrigation performance 

evolved? 

2- What are the critical strengths, limitations, and 

areas of synergy among the core assessment 

approaches (direct measurement, remote 

sensing, and agro-hydrological modeling)? 

3- What are the key non-technical (socio-

economic, institutional, financial) factors 

identified in the literature as primary barriers 

to achieving high performance? 

4- How can emerging technologies (e.g., 

advanced remote sensing, AI) and pressing 

future challenges (e.g., climate change) be 

integrated into a cohesive and forward-looking 

assessment framework? 

 

2.2. Search strategy and information sources 

A comprehensive literature search was conducted 

using a multi-tiered approach to ensure both rigor 

and broad coverage of relevant scientific 

literature and influential reports. The primary 

systematic search was performed in two major 

academic databases: Scopus and Web of Science 

(WOS). These databases were chosen due to their 

extensive indexing of high-quality, peer-reviewed 

scientific literature across multiple disciplines, 

providing a robust and replicable baseline. Our 

decision to focus the primary systematic search 

on these two databases and to systematically 

exclude general grey literature was made to 

ensure a consistent standard of peer-reviewed 

evidence. 

This primary search was supplemented by a 

targeted manual search for two types of additional 

highly relevant sources: (1) Influential reports 

from key international organizations central to 

irrigation management, such as the International 

Commission on Irrigation and Drainage (ICID) 

and the Food and Agriculture Organization 

(FAO); and (2) A limited number of highly 

relevant peer-reviewed articles from other 

journals that were identified through the 

screening of reference lists of core review 

articles.  

This hybrid strategy combines the systematic 

nature of database searching with the 

thoroughness of manual supplementation, 

ensuring our review is grounded in both a broad 

evidence base and seminal works in the field. 

The search timeframe was set from 1990 to 2025, 

with the start date chosen to coincide with the 

publication of the influential Small & Svendsen 

(1990) framework, which marked a turning point 

in the conceptualization of irrigation 

performance. The search query was constructed 

using a combination of keywords and Boolean 

operators to capture the multidisciplinary nature 

of the topic. To ensure comprehensiveness and 

avoid omitting relevant studies, the search string 

was rigorously developed and included terms 

such as "benchmarking," "irrigation efficiency," 

"water productivity," "water delivery 

performance," "governance," and "machine 

learning." The core search string was: 

("canal irrigation" OR "irrigation scheme" OR 

"irrigation system") AND ("performance 

assessment" OR "performance evaluation" OR 

"benchmarking" OR "irrigation efficiency" OR 

"water productivity" OR "water delivery 

performance") AND ("remote sensing" OR 

"agro-hydrological model" OR "socio-economic" 

OR "institutional" OR "governance" OR "climate 

change" OR "artificial intelligence" OR "machine 

learning") 

 

2.3. Eligibility criteria and study selection 

Studies retrieved from the database search were 

subjected to a rigorous three-stage screening 

process based on predefined inclusion and 

exclusion criteria, as illustrated in the PRISMA 

2020 flow diagram (Figure 1). 

Inclusion Criteria: 

• Peer-reviewed journal articles, comprehensive 

review papers, and high-impact conference 

proceedings. 

• Publication in the English language. 
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• The primary focus is on the performance of 

canal-fed surface irrigation systems. 

• Studies that proposed, applied, or critically 

reviewed assessment frameworks, 

performance indicators, or specific 

methodologies (technical, socio-economic, 

institutional, or integrated). 

• For the review, "high-impact conference 

proceedings" are precisely defined as: (1) 

proceedings from conferences sponsored by 

major international academic and professional 

societies in the fields of water resources and 

agricultural engineering (e.g., IAHS, ICID); 

and/or (2) proceedings that are fully indexed 

within the Scopus or Web of Science 

databases. 

Exclusion Criteria: 

Studies focused exclusively on on-farm irrigation 

technologies (e.g., drip, sprinkler) without a clear 

link to the performance of the canal delivery 

system. 

• Studies focused exclusively on on-farm 

irrigation technologies (e.g., drip, sprinkler) 

without a clear link to the performance of the 

main canal delivery system. 

• Studies concerning non-irrigation canals (e.g., 

for navigation, hydropower, or urban water 

supply). 

• Grey literature (e.g., dissertations, theses, and 

non-peer-reviewed reports). 

The selection process involved an initial 

screening of titles, followed by a review of 

abstracts, and concluded with a full-text 

assessment of potentially relevant articles. To 

minimize individual bias, all titles and abstracts 

were independently screened by two of the 

authors. Any discrepancies or uncertainties 

regarding the inclusion of a study were resolved 

through discussion and consensus with a third 

author. 

The systematic search and screening process is 

rigorously summarized in the PRISMA 2020 flow 

diagram (Figure 1). The initial electronic search 

of Scopus and Web of Science databases yielded 

2,130 records. An additional 47 records were 

identified through a manual search of reference 

lists from key review articles, resulting in 2,177 

total records identified. After diligently removing 

557 duplicate records, 1,620 unique records 

proceeded to title and abstract screening. This 

initial screening led to the exclusion of 640 

records that were clearly outside the scope of the 

review (e.g., irrelevant topics, non-research 

articles). The full texts of the remaining 980 

articles were then sought for retrieval and 

assessed for eligibility. Of these, 682 full-text 

articles could not be retrieved or were deemed 

unavailable. The remaining 298 full-text articles 

were then rigorously assessed against the 

predefined inclusion and exclusion criteria. This 

final eligibility assessment resulted in the 

exclusion of 200 articles. Ultimately, 98 studies 

were included in the qualitative synthesis of this 

present review. This transparent and systematic 

process ensures the replicability and robustness 

of our literature base upon which the review's 

conclusions are built. 

 

2.4. Data extraction and synthesis 

A structured data extraction template was 

developed and employed to systematically 

capture relevant information from each of the 

final included studies. The key variables 

extracted were categorized as follows: (i) 

Bibliometric Information (Authors, year, journal, 

study location); (ii) Study Objectives and Scope 

(Primary research question, scale of analysis); 

(iii) Performance Assessment Methodology (e.g., 

Direct Measurement techniques, Remote Sensing 

platforms/indices, Agro-hydrological models, 

Socio-economic survey methods); (iv) Key 

Performance Indicators (KPIs) (Specific metrics 

used, such as efficiency, equity, adequacy, 

reliability); (v) Key Findings and Conclusions 

(Main outcomes and limitations identified by the 

authors); and (vi) Limitations and Future 

Research Directions (Author-identified 

limitations of their study and suggestions for 

future work). To ensure reliability, one author 

conducted the primary data extraction, and a 

second author independently verified a random 

25% sample of the extracted data for accuracy 

and completeness. 
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Figure 1. PRISMA 2020 flow diagram for the systematic review. 

 

Given the heterogeneity of the methodologies, 

scales, and contexts of the included studies, a 

quantitative meta-analysis was not feasible. 

Therefore, we applied a qualitative, narrative 

synthesis approach. This analytical framework 

involved identifying, grouping, and summarizing 

findings across studies to develop a coherent 

narrative. This approach was chosen because it is 

ideally suited for integrating evidence from 

diverse study types to identify recurring themes, 

trace the evolution of methodologies, and identify 

critical knowledge gaps—all of which were 

central to our objective of developing a new 

conceptual framework. 

 

3. The methodological triad in performance 

assessment: a critical synthesis 

The practice of canal performance assessment is 

built upon a triad of core methodologies: direct 

field measurement, remote sensing (RS), and 

agro-hydrological modeling. These approaches 

are not mutually exclusive competitors; rather, 

they form a complementary toolkit, each with 

distinct strengths and limitations. The evolution 

of the field can be understood through the 

progression and, more importantly, the 

integration of these three pillars. Our systematic 

review found that approximately 55% of the 

included studies primarily relied on RS, 25% on 

modeling, 10% on direct measurement, and 15% 

employed integrated/hybrid approaches. A key 

operational approach for combining these 

methods in practice, particularly in research 

settings, involves data assimilation, where 

satellite-derived observations (e.g., ETa, soil 

moisture, LAI) are used to calibrate and update 

agro-hydrological models, improving their 

accuracy and predictive power (Han et al., 2019; 

Kumar et al., 2019). Comparative Analysis of 

Core Performance Assessment Methodologies is 

summarized in Table 2. 

 

3.1. Foundational approaches: the role and 

limitations of Direct Measurement 

Direct field measurement is the bedrock of 

performance assessment, providing the essential 

"ground truth" against which all other methods 

are ultimately validated. This approach involves 

the physical measurement of key variables within 

the canal command area, such as canal discharges 

using flow measurement structures, crop yield 

samples from designated plots, and socio-

economic data through farmer surveys. This high-

fidelity, localized data is indispensable for 

calculating the classical performance indicators 

that defined the field for decades, including 

hydraulic metrics like conveyance and 
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application efficiency, and service delivery 

metrics like adequacy, equity, and dependability 

(Bantero et al., 2011). Seminal studies, such as 

that by Molden and Gates (1990), utilized field 

data to establish quantitative benchmarks for 

these indicators, creating a standardized basis for 

comparison. Subsequent work by Bos et al. 

(1991) in Argentina assessed distribution 

accuracy, and Burt & Styles (1998) compared 

multiple systems using a broad set of internal and 

external indicators. Later, Molden et al. (1998) 

introduced economic indicators for strategic 

cross-system comparisons. 

Throughout the 2000s, researchers expanded on 

this foundation. Studies combined field data with 

economic metrics in Pakistan (Tahir & Habib, 

2000), used soil-water balance techniques in 

Spain (Isidoro et al., 2004), and applied the 

Penman-Monteith equation to assess tertiary-

level performance in Mali and Turkey (Korkmaz 

et al., 2009; Vandersypen et al., 2006). These 

field-based methods provide high-fidelity, 

localized data indispensable for calculating 

classical performance indicators (Mishra et al., 

2023; Nigam et al., 2023a; Somda et al., 2020). 

Despite its precision, the direct measurement 

approach is constrained by significant practical 

limitations. It is exceptionally resource-intensive, 

requiring substantial investment in time, labor, 

and equipment, which often makes it 

prohibitively expensive for routine or large-scale 

applications. Consequently, its use is typically 

restricted to smaller, targeted case studies or to 

the higher hierarchical levels of a system, such as 

the main and secondary canals, where 

measurement points are fewer (Bastiaanssen & 

Bos, 1999; Jiang et al., 2015). This approach 

fundamentally struggles to capture the vast 

spatial heterogeneity of water use and crop 

production across thousands of individual farm 

plots within a large command area and is ill-

suited for the kind of continuous, real-time 

monitoring required for dynamic operational 

management (Gowing, 1998).  

The field is actively evolving to address these 

constraints. To reduce costs and enhance 

sustainability, particularly in low-income 

countries and data-scarce regions, reviewed 

studies demonstrate innovative strategies such as 

the development of low-cost, open-source flow 

sensors (Obaideen et al., 2022), the 

implementation of farmer-led participatory 

monitoring initiatives (Namara et al., 2010), and 

the use of mobile applications for simplified data 

collection (Cerjak et al., 2025). In the context of 

climate change and the growing need for real-

time water management, traditional field-based 

data collection is increasingly integrated into 

dynamic monitoring frameworks. Examples from 

the reviewed literature include Supervisory 

Control and Data Acquisition (SCADA) systems 

that feed real-time sensor data into operational 

models for dynamic gate control and water 

ordering (Abhilash et al., 2022), and smartphone-

based applications allowing water users to report 

water availability and demand, integrating into 

management dashboards (Cerjak et al., 2025). 

These advancements demonstrate how digitized 

field data can support responsive decision-

making. Consequently, the consensus is that 

direct measurements are most practical at higher 

hierarchical levels of an irrigation system and 

remain essential for validating other, more 

scalable assessment methods. 

 

3.2. The spatial revolution: advances in 

Remote Sensing for command area monitoring 

The advent of satellite-based remote sensing (RS) 

revolutionized performance assessment by 

overcoming the scale limitations of direct 

measurement. RS provides a synoptic, spatially 

continuous view of the entire command area, 

enabling objective and repeatable monitoring 

(Bastiaanssen & Bos, 1999). The technological 

evolution in this domain has been rapid. Early 

applications relied on vegetation indices like the 

Normalized Difference Vegetation Index 

(NDVI), derived from optical sensors, to map 

crop types, assess vegetation health, and monitor 

the extent of irrigated areas (Amarasinghe et al., 

2021; Nikam et al., 2020). A major leap forward 

came with the widespread application of thermal 

infrared data to drive Surface Energy Balance 

(SEB) models, such as SEBAL (Surface Energy 

Balance Algorithm for Land) (Derardja et al., 

2024). These models estimate actual 

evapotranspiration (ETa), the total water 

consumed by evaporation and plant transpiration, 

which serves as a direct, spatially explicit 

measure of water use and is a critical input for 
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calculating water productivity (Mekonnen et al., 

2024; Waqas et al., 2021). 

There are many studies observed during the 

timeframe considered. The performance carried 

out in South Asia with analyzing water 

productivity using SEBAL Eta calculation 

(Bastiaanssen et al., 2003; Sakthivadivel et al., 

1999). The studies carried out with the different 

input data, like MODIS (El-Agha et al., 2011), 

Landsat and SPOT (Kharrou et al., 2013), LISS-

III (Kumar et al., 2014), and Sentinel-2 

(Mekonnen et al., 2024), for performance 

analysis. 

The current state-of-the-art is characterized by 

increasingly powerful and accessible platforms 

that are transforming assessment capabilities: 

• High-resolution optical and thermal data: 

The Copernicus program's Sentinel-2 

constellation provides freely available optical 

imagery at a high spatial resolution (10 m) and 

frequent revisit time (approx. 5 days). This 

enables monitoring at the individual field 

scale, allowing for the derivation of crop-

specific parameters like the basal crop 

coefficient (Kcb) and the precise estimation of 

crop water requirements across diverse and 

fragmented agricultural landscapes (El 

Hachimi et al., 2022; Er-Rami et al., 2021; 

Maselli et al., 2020). Future missions like the 

Copernicus Land Surface Temperature 

Monitoring (LSTM) mission promise to 

deliver high-resolution thermal data, which 

will further enhance the accuracy of ET 

estimation and crop stress detection (Derardja 

et al., 2024; Mekonnen et al., 2024). 

• Integrated water accounting platforms: The 

Food and Agriculture Organization's (FAO) 

WaPOR portal 

(https://data.apps.fao.org/wapor/) represents a 

paradigm shift in data accessibility. It provides 

open-access, continental-scale datasets on key 

performance variables, including ETa, biomass 

production, and water productivity, derived 

from satellite data. This democratizes 

performance assessment, empowering local 

water managers, researchers, and even farmer 

associations to conduct consistent and 

standardized benchmarking of their systems 

without requiring extensive technical expertise 

in RS data processing (Blatchford et al., 2020). 

Case studies using WaPOR have demonstrated 

its utility in assessing indicators like adequacy, 

equity, and uniformity across large schemes 

(Amsalu & Mulu, 2025; Chukalla et al., 2022; 

Tiruye et al., 2023). However, our review 

indicates that while these products hold great 

potential and are widely used in research, their 

effective day-to-day application by Water User 

Associations (WUAs) or local irrigation 

managers remains limited in many regions. 

Key reported barriers to knowledge transfer 

from research to practice include a lack of 

technical capacity at the local level, 

insufficient integration with existing decision-

support systems, and inadequate training 

programs (Blatchford et al., 2020; Khaspuria et 

al., 2024). 

 

Despite these advances, challenges remain. 

Optical and thermal sensors are limited by cloud 

cover, which can create significant data gaps, 

particularly in monsoon climates (Li et al., 2025; 

Uday et al., 2025). Our review assessed the 

impact of these limitations on reliability, 

identifying alternative approaches in the 

literature such as the use of Synthetic Aperture 

Radar (SAR) data (e.g., from Sentinel-1), which 

can penetrate clouds and provide all-weather 

monitoring for soil moisture and flood mapping 

(Mkhwenkwana et al., 2025). Furthermore, data 

fusion techniques, combining optical with SAR 

or other sensor types, and spatio-temporal gap-

filling algorithms are presented as promising 

methods for generating more complete and 

reliable datasets (Mao et al., 2023), thus 

mitigating the impact of cloud limitations. All 

RS-derived products require robust atmospheric 

correction and, crucially, periodic ground-

truthing with field measurements to ensure their 

accuracy and local validity. Our analysis suggests 

that while ground-truthing is acknowledged as 

important, the extent and scale of field data used 

to validate RS outputs vary. While many 

research-oriented studies emphasized rigorous 

validation against comprehensive field data (e.g., 

flux towers, crop coefficient) (Alataway et al., 

2019; Xue et al., 2021), a significant number of 

practical applications, especially those relying on 

publicly available, pre-processed products like 

WaPOR, often used less intensive or assumed 
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validation (Blatchford et al., 2020). 

Encouragingly, rather than focusing on single 

indicators, our review identified integrative 

frameworks that combine multiple RS-derived 

indicators (e.g., crop classification, 

evapotranspiration, biomass production, and 

equity in water distribution) into coherent multi-

criteria performance assessment systems. 

Examples include multi-indicator dashboards and 

spatially explicit water accounting models that 

are fed entirely by RS data (Chukalla et al., 2022; 

Han et al., 2019; Zafar et al., 2021). 

 

3.3. The predictive frontier: Agro-hydrological 

modeling for scenario analysis 

The third pillar of the methodological triad is 

agro-hydrological modeling. Models such as 

SWAP, SWAT, CROPWAT, AquaCrop, Hydrus, 

etc, are powerful analytical tools that simulate the 

complex, dynamic interactions within the soil-

water-atmosphere-plant continuum.  While RS 

excels at observing the current state of a system, 

the unique strength of modeling lies in its 

predictive capability. Models allow analysts to 

move beyond assessing past performance to 

exploring a range of "what-if" scenarios, making 

them indispensable for planning and strategic 

management (Uniyal & Dietrich, 2021). 

Key applications in performance assessment 

include estimating spatially distributed crop 

yield, crop water requirements, and analyzing the 

components of the water balance (e.g., 

quantifying non-beneficial losses like deep 

percolation and runoff) (Woznicki et al. 2015). 

Critically, evaluating the potential impacts of 

future climate change on water availability, 

demand, and impact on performance under water 

stress conditions (Basukala et al., 2024; Li & Ren, 

2019; Liu et al., 2018). These models can 

simulate how a system might perform under 

projected future climate scenarios (e.g., from 

CMIP6 models), thereby testing the efficacy of 

various adaptation strategies before they are 

implemented (Rudraswamy & Umamahesh, 

2024). Our review identified several studies that 

demonstrated the application of these approaches 

in low-income countries and data-scarce regions 

by utilizing globally available datasets for soil 

and weather and by incorporating participatory 

methods to estimate key management parameters, 

thus making robust modeling feasible under such 

constrained conditions (Basukala et al., 2024; 

Kaini et al., 2024; Mishra et al., 2023). 

The most powerful modern application of these 

models lies in their synergy with remote sensing. 

The assimilation of satellite-derived data, such as 

ETa or Leaf Area Index (LAI), to calibrate and 

validate model parameters has been shown to 

dramatically improve their spatial accuracy and 

reduce predictive uncertainty (Han et al., 2019; 

Niu et al., 2018; Van Dam et al., 2006). This 

integration combines the observational power of 

RS with the process-based understanding and 

predictive capacity of models. However, the use 

of agro-hydrological models is not without its 

challenges. They are often data-intensive, 

requiring extensive inputs on soil, climate, and 

crop parameters for proper setup and calibration 

(Uniyal et al. 2019). The process of 

parameterization can be complex, and all models 

contain inherent uncertainties that must be 

carefully quantified and communicated to end-

users. 

 

4. Discussion: towards an integrated, forward-

looking assessment framework 

The synthesis of the methodological triad reveals 

a clear trajectory towards more spatially 

comprehensive and predictive assessments. 

However, it also exposes a fundamental 

limitation: a purely technical evaluation, no 

matter how advanced, is insufficient to diagnose 

and solve the persistent underperformance of 

many canal systems. The most sophisticated 

remote sensing algorithm can quantify inequity in 

water distribution, but it cannot explain why that 

inequity exists. The answer often lies not in the 

physics of water flow, but in the complex 

interplay of institutions, economics, and human 

behavior. A truly effective assessment framework 

must therefore bridge this technical-social divide 

and be forward-looking, accounting for the 

profound challenges of climate change and the 

opportunities presented by emerging 

technologies like AI. 
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4.1. Bridging the technical-social divide: 

incorporating Institutional and Socio-

economic dimensions 

A common metaphor in development is that of 

"hardware" and "software." In canal irrigation, 

the physical infrastructure—dams, canals, and 

gates is the hardware. The institutions, 

governance structures, policies, and social norms 

that dictate how that hardware is used constitute 

the software (CWC, 2002). Decades of 

experience have shown that even the most well-

designed hardware will fail if the software is 

dysfunctional. Technical performance indicators, 

such as low delivery efficiency or poor equity, are 

often symptoms of deeper, systemic failures in 

this institutional software (Amarasinghe et al., 

2021). 

A systematic review of the literature reveals a 

consistent set of non-technical barriers that 

plague canal systems globally, which can be 

categorized as follows: 

• Financial barriers: The most frequently cited 

barrier is a chronic lack of funding for 

operation and maintenance (O&M). This stems 

from insufficient government allocations, 

coupled with a poor system of cost recovery 

from users. Water User Associations (WUAs) 

are often unable to collect adequate water fees, 

rendering them financially unviable and 

incapable of performing routine maintenance, 

leading to a downward spiral of infrastructure 

decay and declining service quality 

(Amarasinghe et al., 2021; Nigam et al., 

2023b; Zafar et al., 2021). 

• Legal and Institutional barriers: 

Performance is often hampered by an 

inadequate or ambiguous legal framework 

governing water rights, the responsibilities of 

WUAs, and the process of irrigation 

management transfer from the state to users. 

Without clear and enforceable rules for water 

distribution and conflict resolution, political 

interference and capture of resources by 

powerful elites can become rampant, 

undermining any attempt at equitable 

management (Nigam et al., 2023b). 

• Capacity and Social Barriers: The 

effectiveness of WUAs and irrigation agencies 

is frequently limited by a lack of technical and 

managerial capacity. Insufficient training in 

financial management, water scheduling, and 

conflict resolution weakens these institutions 

from within (Nigam et al., 2023b). 

Furthermore, social dynamics, including pre-

existing inequalities, lack of trust between 

farmers and officials, and internal disputes 

over water allocation, can paralyze collective 

action and render even well-structured WUAs 

ineffective (Mwadzingeni et al., 2022). 

Therefore, a modern performance assessment 

must adopt a mixed-methods approach that 

integrates quantitative technical data with 

qualitative institutional and socio-economic 

analysis (Mohammedshum et al., 2023). This 

creates a multi-layered diagnostic process. For 

example, remote sensing might first identify a 

"hotspot" of low water productivity in a tail-end 

distributary. Agro-hydrological modeling could 

then test whether this is due to insufficient water 

supply or other agronomic factors. Finally, on-

the-ground institutional analysis, through farmer 

surveys and stakeholder workshops, would 

diagnose the root cause: is it a result of a broken 

control gate (a technical problem), illegal 

upstream water abstraction (a governance 

problem), or the collapse of the local WUA's fee 

collection system (a financial and social 

problem)? Only by integrating these perspectives 

can the correct problem be diagnosed and the 

appropriate intervention be designed. This multi-

layered diagnostic process is central to the 

proposed integrated socio-technical assessment 

framework (Figure 2). As depicted, the 

framework integrates insights from The 

Methodological Triad with Institutional & Socio-

Economic Analysis. 
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Table 2. Comparative analysis of core performance assessment methodologies. 

Attribute Direct Measurement Remote Sensing 
Agro-hydrological 

modeling 

Integrated approaches 

(Hybrid) 

Key outputs 

Point/local 

measurements of flow, 

yield, water quality; 

Survey data. 

Spatially continuous maps 

of crop type, vegetation 

health (NDVI), actual 

water use (ETa), and water 

productivity. 

Spatially distributed 

estimates of water 

balance components, 

crop water demand, 

yield, and Future scenario 

predictions. 

Holistic performance 

dashboards combining 

ground truth, spatial 

patterns, and future 

projections; Actionable 

insights for dynamic 

management. 

Spatial scale 
Point to field/tertiary 

canal level. 

Field to command area, 

basin, and continental 

scale. 

Field to command area 

and basin scale. 

Field to basin scale, 

leveraging strengths of 

all components. 

Temporal scale 

Intermittent (campaign-

based) to continuous (at 

select points). 

Periodic (satellite revisit 

time, e.g., 5-16 days); 

subject to cloud cover. 

Continuous simulation 

(e.g., daily time-step) for 

historical and future 

periods. 

Near real-time to 

continuous historical and 

future analysis, filling 

data gaps. 

Data 

requirements 

Low initial data, but high 

for ongoing 

measurement (field 

crews, equipment). 

Satellite imagery, 

meteorological data, and 

ground-truthing data for 

validation. 

Extensive input data: 

climate, soil properties, 

crop parameters, 

management practices, 

and canal network data. 

Integrates all data types; 

benefits from data 

sharing and 

interoperability. 

Cost/resource 

intensity 

High operational cost 

(labor, travel, 

equipment). 

Low data acquisition cost 

(for public data), 

moderate-to-high 

expertise required for 

processing. 

High initial setup cost 

(data collection, 

calibration), low cost for 

subsequent simulations. 

Moderate initial 

investment (platforms, 

training) but highest 

long-term value for 

actionable insights. 

Key strengths 

Provides "ground truth" 

data; High accuracy at 

the point of 

measurement; Can 

measure variables not 

visible from space (e.g., 

groundwater levels, 

institutional factors). 

Excellent spatial 

coverage; Objective and 

repeatable; Can monitor 

inaccessible areas; 

Enables historical analysis 

and benchmarking. 

Predictive capability for 

scenario analysis (e.g., 

climate change, policy 

changes); Simulates 

unseen processes (e.g., 

deep percolation). 

Overcomes individual 

limitations; provides 

holistic, multi-

dimensional, and 

actionable insights; best 

for dynamic, adaptive 

management. 

Critical 

limitations 

Poor spatial 

representation; Labor- 

and time-intensive; 

Impractical for large-

scale, continuous 

monitoring. 

Limited by cloud cover; 

Indirect measurement 

requires validation; Can 

be less accurate for certain 

variables; Temporal 

resolution can be a 

constraint. 

High data dependency; 

Model structure and 

parameter uncertainty; 

Requires significant 

expertise for calibration 

and validation. 

Requires significant 

technical capacity and 

interdisciplinary 

expertise for setup and 

maintenance; Challenges 

in integrating diverse 

data formats. 

Uncertainty 

considerations 

Low inherent uncertainty 

at the specific 

measurement point, but 

high when extrapolating 

spatially. Reliability is 

heavily dependent on 

sampling design. 

Moderate. Main sources: 

atmospheric correction, 

sensor calibration, model 

parameterization. 

The highest potential 

uncertainty due to input 

data, model structure, and 

parameterization. 

Aims to reduce overall 

uncertainty by cross-

validating and 

complementing data 

sources, though it 

introduces integration 

complexities. 

Applicability in 

Low-resource 

contexts 

Feasible with targeted, 

optimized sampling, 

low-cost sensors, and 

participatory monitoring. 

High potential with free 

datasets (Sentinel, 

WaPOR), but requires 

capacity building for data 

processing and 

interpretation. 

Feasible with global 

datasets and participatory 

parameterization, but 

high initial setup 

expertise is required. 

Offers the most 

promising long-term 

value for money after 

initial capacity building 

and system setup. 

This framework is operationalized through a 

sequential, explanatory mixed-methods design. 

Specific tools include geospatial analysis 

platforms (e.g., QGIS, Google Earth Engine) for 

RS data, simulation models (e.g., SWAT, 

AquaCrop) for biophysical analysis (Han et al., 

2019; Zafar et al., 2021), and structured 

qualitative methods like semi-structured 
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interviews, focus group discussions, and 

Participatory Rural Appraisal (PRA) for socio-

institutional insights (Makin, 2023). The 

integration of quantitative and qualitative data 

can occur through "joint displays," where, for 

example, a map of RS-derived water inequity is 

overlaid with key themes from farmer interviews, 

creating a unified diagnostic narrative (Azari & 

Rizi, 2021; Zafar et al., 2021). This framework, 

while robust, emphasizes context-sensitivity; its 

application requires adaptation to local socio-

economic, institutional, and climatic conditions 

to avoid being overly generic. 

 

4.2. Assessing for resilience: performance 

evaluation in the context of Climate change 

Traditional performance assessment is largely a 

retrospective exercise, evaluating how efficiently 

a system operated in the past. In an era of 

accelerating climate change, this is no longer 

sufficient. Assessment must become prospective, 

evaluating a system's capacity to perform under 

future conditions of increased uncertainty and 

stress. The goalposts are shifting from optimizing 

for historical efficiency to designing for future 

resilience (Mwadzingeni et al., 2022). 

Climate change is projected to impact canal 

systems in multiple ways: altering the volume 

and timing of water availability due to changes in 

precipitation and snowmelt patterns; increasing 

crop water demand due to higher temperatures 

and longer growing seasons; and raising the risk 

of damage to physical infrastructure from more 

frequent and intense extreme weather events, 

such as floods and droughts (Mdemu et al., 2025). 

 

Consequently, future performance assessments 

must incorporate new indicators designed to 

measure resilience and adaptive capacity: 

• System robustness: This metric assesses the 

ability of the physical infrastructure and its 

operational rules to maintain function across a 

wider range of hydrological variability than 

historically experienced. Measurable aspects 

include the frequency and duration of water 

delivery failures under stress scenarios, the 

capacity of infrastructure to withstand extreme 

events without catastrophic breakdown, and 

the ability of a system to recover its pre-stress 

performance within a defined timeframe 

(Kazem Shahverdi, 2025; Krishan et al., 2018). 

• Adaptive capacity: This evaluates the ability 

of the system's human components, farmers, 

WUAs, and government agencies to learn, 

innovate, and adjust management practices in 

response to evolving climatic signals and 

socio-economic conditions (Mwadzingeni et 

al., 2022). Metrics could involve the speed of 

policy adjustment, adoption rates of climate-

smart agriculture technologies, diversification 

of water sources, or the institutional flexibility 

to reallocate water rights during scarcity 

(Gamage et al., 2024; Wakweya, 2023). 

Agro-hydrological models are the primary tools 

for this forward-looking assessment. By driving 

these models with downscaled climate 

projections from General Circulation Models 

(e.g., CMIP5 or 6), analysts can simulate future 

system performance and test the effectiveness of 

various adaptation strategies, such as changing 

cropping patterns, investing in water storage, or 

modifying operational rules (Basukala et al., 

2024; Kaini et al., 2024; Liu et al., 2018). The 

inherent uncertainties in climate projections, 

model parameters, and input data are critical and 

must be systematically addressed. This is 

proposed through rigorous uncertainty 

quantification techniques such as sensitivity 

analysis, probabilistic scenario analysis, and 

ensemble modeling, providing a range of possible 

outcomes rather than single predictions (FAO, 

2013; Hussain et al., 2025). Incorporating these 

uncertainties into decision-making involves 

presenting probabilities of different outcomes to 

stakeholders, enabling risk-informed planning 

and the identification of robust solutions that 

perform well across a spectrum of plausible 

futures. 
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Figure 2. The proposed Integrated Socio-technical assessment framework for Canal irrigation 

systems. 

 

4.3. The next technological wave: the role of AI 

and Machine Learning 

Artificial Intelligence and Machine Learning 

(AI/ML) represent the next frontier in the 

evolution of canal system management, offering 

the potential to move from passive performance 

monitoring to active, intelligent, and optimized 

operations. While still an emerging field for 

large-scale canal networks, applications at the 

field and sub-system level demonstrate 

significant promise. 
 

Key applications of AI/ML relevant to canal 

performance include: 

• Predictive analytics: ML models, such as 

Artificial Neural Networks (ANNs), Random 

Forests (RF), and Support Vector Machines 

(SVMs), have proven highly effective at 

forecasting key variables like irrigation water 

demand, canal flow rates, and soil moisture, 

often with greater accuracy and computational 

efficiency than traditional process-based 

models (Belarbi & El Younoussi, 2025; Younes 

et al., 2024). 

• Optimization of operations: Algorithms can 

be used to optimize water allocation and 

delivery schedules across an entire canal 

network. By processing real-time data on 

supply, demand, and system constraints, these 

tools can recommend gate operations that 

maximize objectives like overall water 

productivity or equity in distribution 

(Shahverdi, 2025). 

• Data fusion for decision support: The true 

power of AI lies in its ability to integrate and 

learn from diverse, large-scale datasets. Future 

decision support systems will fuse real-time 

data streams from multiple sources—remote 

sensing platforms, in-field IoT sensors, 

weather forecasts, and market prices to provide 

comprehensive, data-driven recommendations 

to both canal managers and farmers (Farig et 

al., 2025). 

 

The integration of these technologies, however, 

has profound governance implications. An AI 

system designed solely to optimize for water 

productivity might inadvertently recommend 

water allocation strategies that are technically 

efficient but socially inequitable, for example, by 

prioritizing the high-value cash crops of already 

wealthy farmers over the subsistence food crops 

of poorer, tail-end users. This raises a critical 

future challenge: designing "socio-technically 

aware" AI systems that can optimize for multiple, 

sometimes competing, objectives, including 

equity, environmental sustainability, and social 

justice. 

Safeguarding social equity and inclusion of 

vulnerable groups within this integrated 

framework requires several mechanisms: (1) 

establishing explicit ethical guidelines and 

regulatory frameworks for AI in water 
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management; (2) implementing participatory 

design processes for AI tools that actively involve 

diverse stakeholder groups, especially vulnerable 

farmers, to ensure their needs and values are 

reflected; (3) integrating equity-focused metrics 

(e.g., water access disparity, distribution of 

benefits) directly into AI's objective functions 

and monitoring frameworks; and (4) ensuring 

transparent and explainable AI (XAI) outputs to 

build trust and allow for accountability (Maggo, 

2025; Zhu et al., 2022). 

The performance assessment of the future will 

therefore need to evaluate not only the 

performance of the canal system itself but also the 

fairness, transparency, and accountability of the 

algorithms that help to govern it. Key research 

frontiers include the development of large, high-

quality training datasets for canal systems, 

improving the transferability of models across 

different regions, and advancing the field of 

explainable AI (XAI) to build trust and facilitate 

adoption among stakeholders (Zhu et al., 2022). 

The overall adaptability and transferability of this 

proposed framework (Figure 2) across diverse 

settings (socio-economic, institutional, climatic) 

is ensured by its multi-faceted and adaptive 

nature. It is not a rigid, one-size-fits-all solution 

but a diagnostic approach. Its context-sensitivity 

is inherent in the qualitative data collection 

component (interviews, PRA), which directly 

assesses local institutional and social conditions, 

and in the flexible application of remote sensing 

and modeling tools, which can be calibrated to 

local agro-climatic specificities. This allows the 

framework to identify universally relevant 

challenges while still tailoring interventions to 

unique local contexts. 

 

5. Conclusion  

5.1. Recapitulation of findings 

This systematic review has systematically 

charted the evolution of performance assessment 

in canal irrigation systems, tracing its path from a 

narrow focus on hydraulic efficiency to the 

complex, multidisciplinary challenge it 

represents today. The analysis confirms a clear 

progression in technical methodologies, from 

labor-intensive direct measurements to the vast 

spatial reach of remote sensing and the predictive 

power of agro-hydrological modeling. The state-

of-the-art lies not in choosing one method, but in 

their synergistic integration, as evidenced by the 

increasing adoption of hybrid approaches 

discussed in Section 3. However, the central 

argument of the review, unequivocally supported 

by the consistent non-technical barriers identified

across the literature (Section 4.1), is that technical 

sophistication alone is insufficient. The persistent 

gap between potential and actual performance in 

many of the world's canal systems is primarily a 

function of deep-seated financial, institutional, 

and social barriers. Effective and sustainable 

canal management, therefore, demands an 

integrated assessment framework that synthesizes 

robust technical methodologies with a nuanced 

understanding of socio-institutional dynamics, 

prepares for the future by incorporating climate 

resilience, and harnesses the potential of 

emerging AI technologies. This integrated 

framework directly emerges from the synthesis of 

findings across Sections 3 and 4, which 

collectively reveal the necessity of combining 

disparate technical and social methods for holistic 

problem diagnosis and future-oriented solutions. 

 

5.2. Implications for policy and practice 

The findings of the review offer several 

actionable recommendations for those tasked 

with managing, funding, and regulating canal 

irrigation systems, strongly supported by the 

evidence reviewed in Sections 3 and 4: 

• Invest in "Software" alongside 

"Hardware": Policymakers and funding 

agencies should shift from a model that 

prioritizes investment in physical 

infrastructure ("hardware") to one that gives 

equal weight to "software." This means co-

investing in strengthening Water User 

Associations, developing transparent and 

enforceable water allocation policies, and 

building the technical and managerial capacity 

of both farmers and agency staff. This 

recommendation is a direct consequence of the 

widespread evidence of non-technical barriers 

detailed in Section 4.1. 

• Adopt a tiered, diagnostic assessment 

approach: Irrigation managers should adopt a 

multi-scale assessment strategy. Broad-scale, 

routine monitoring can be conducted cost-

effectively using open-access remote sensing 
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tools like FAO's WaPOR to identify system-

wide trends and pinpoint "hotspots" of 

underperformance. These findings should then 

trigger more intensive, targeted diagnostics at 

the local level, using a combination of direct 

measurement and socio-economic analysis to 

understand the specific root causes of the 

identified problems. This approach directly 

operationalizes the mixed-methods integration 

described in Section 4.1. 

• Mainstream Climate resilience into 

planning: Performance assessment must 

become a forward-looking exercise. All new 

irrigation projects and modernization plans 

should be explicitly evaluated for their 

resilience to future climate change impacts, 

using scenario-based modeling to test the 

robustness of infrastructure and the 

adaptability of management plans. This is a 

crucial implication drawn from the discussion 

on climate change impacts and resilience 

assessment in Section 4.2. 

 

5.3. A structured agenda for future research 

This study identifies several critical research gaps 

and proposes a structured agenda to guide future 

scientific inquiry in the field, as summarized in 

Table 3. The goal is to move beyond incremental 

improvements in individual methods and toward 

a more holistic and impactful science of 

performance assessment. 

 

 

Table 3. Identified research gaps and proposed future directions. 
Thematic 

area 

Identified gap Key research questions Potential methodologies 

Socio-

Technical 

Integration 

Lack of standardized 

methods for integrating 

qualitative institutional 

data with quantitative 

technical metrics. 

How can institutional performance (e.g., 

governance quality, conflict resolution 

effectiveness) be quantified and causally linked 

to technical outcomes like water productivity and 

equity? How can participatory assessment 

methods be rigorously combined with remote 

sensing data? 

Mixed-methods research designs; 

Development of composite socio-

technical performance indices; 

Bayesian Belief Networks to model 

interactions between social and 

physical variables. 

Climate 

Resilience 

Assessment 

Resilience and adaptive 

capacity are well-

understood concepts but 

are rarely quantified as 

part of routine 

performance 

assessments. 

What are robust, measurable, and transferable 

indicators of adaptive capacity for canal irrigation 

systems? How does institutional flexibility 

influence a system's ability to cope with climate-

induced water shocks? 

Dynamic vulnerability mapping; 

Agent-based modeling to simulate 

farmer adaptation behavior under 

climate stress; Time-series analysis 

of system performance in response 

to historical climate extremes. 

Advanced 

Remote 

Sensing 

Need for robust 

validation of new high-

resolution ET products 

across diverse crop types 

and agro-ecological 

zones. 

How can data fusion techniques synergistically 

combine optical, thermal, and radar (e.g., SAR) 

data to provide all-weather, high-resolution 

estimates of evapotranspiration and soil 

moisture? 

Development of multi-sensor data 

fusion algorithms; Establishment of 

long-term flux tower validation sites 

in under-represented regions; Use of 

Unmanned Aerial Vehicles (UAVs) 

for ultra-high-resolution ground-

truthing. 

AI and 

Machine 

Learning 

Most AI/ML research is 

focused on the field 

scale; applications for 

optimizing operations 

across complex, multi-

user canal networks are 

limited. 

How can explainable AI (XAI) be used to develop 

transparent and trusted decision support systems 

for canal operators? How can reinforcement 

learning be applied to train models for dynamic, 

real-time canal gate control? What are the equity 

implications of AI-driven water allocation, and 

how can fairness be built into optimization 

algorithms? 

Development of hybrid models 

combining ML with hydraulic 

simulation; Application of XAI 

techniques (e.g., SHAP, LIME) to 

irrigation models; multi-objective 

optimization algorithms that 

incorporate equity and 

environmental constraints. 
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This structured agenda, presented in Table 3, 

clearly articulates a path forward by translating 

identified gaps into specific, actionable research 

questions and proposing potential methodologies. 

This provides a focused roadmap for future 

scientific inquiry, aiming to bridge the critical 

gaps identified in the review through targeted 

methodological advancements. 

 

5.4 Limitations of the review  

The current review offers a comprehensive 

synthesis; it is important to acknowledge certain 

limitations that bound its scope and findings. Our 

systematic search was restricted to specific 

English-language databases, which may 

introduce a language bias and exclude relevant 

literature published in other languages or less 

accessible grey literature. Furthermore, the 

qualitative nature of this synthesis, while robust 

for identifying thematic trends, did not include a 

quantitative meta-analysis.  This means we 

focused on synthesizing concepts and 

methodological approaches rather than 

statistically comparing quantitative performance 

indicators across studies. Finally, while we 

discuss the generalizability of the proposed 

framework, it is ultimately a conceptual model 

whose practical implementation will require 

careful adaptation to the unique socio-economic, 

institutional, and climatic contexts of diverse 

irrigation systems, as highlighted in Section 4. 

 

Author Contributions: 

Mohansing Rajaput: Collection and segregation 

of literature, writing, and editing. Abhilash 

Ramadasa: Segregation of literature, Writing, 

reviewing, and editing. Basavanand M. 

Dodamani: Review, editing, and supervision. 

 

Conflicts of interest:  

The authors of this article declared no conflict of 

interest regarding the authorship or publication of 

this article.  

 

Data availability statement: 

Data sharing does not apply to this article, as it is 

a review paper and no new datasets were 

generated or analyzed. All studies and reports 

analyzed during this review are publicly available 

and have been cited in the text and listed in the 

References section. 

 

References 

Abhilash, R., Basappa, V., Chakragiri, S. V., & 

Patankar, D. B. (2022). Geospatial Approach 

for Integrated Command Area Management. 

Journal of Irrigation and Drainage 

Engineering, 148(4), 1–11. doi: 

10.1061/(asce)ir.1943-4774.0001659 

Alataway, A., Al-Ghobari, H., Mohammad, F., & 

Dewidar, A. (2019). Lysimeter-Based Water 

Use and Crop Coefficient of Drip-Irrigated 

Potato in an Arid Environment. Agronomy, 

9(11), 756. doi: 10.3390/agronomy9110756 

Amarasinghe, U. A., Sikka, A., Mandave, V., 

Panda, R. K., Gorantiware, S., 

Chandrasekharana, K., & Ambast, S. K. 

(2021). A re-look at canal irrigation system 

performance: a pilot study of the Sina 

irrigation system in Maharashtra, India. Water 

Policy, 23, 114–129. doi: 

10.2166/wp.2020.291 

Amsalu, Y., & Mulu, A. (2025). Performance 

evaluation of irrigation scheme at Dimama 

Angerf Abay, Awi Zone, Amhara region, 

Ethiopia. Discover Water, 5(1), 40. doi: 

10.1007/s43832-025-00224-y 

Azari, M. D., & Rizi, A. P. (2021). Challenges of 

irrigation water distribution from the 

viewpoint of socio-hydraulic relations*. 

Irrigation and Drainage, 70(5), 1273–1286. 

doi: 10.1002/ird.2596 

Bantero, B., Ayana, M., & Awulachew, S. (2011). 

Assessment of Irrigation Performance along 

the Canal Reach of Community Managed 

Scheme in Southern Ethiopia. Ethiopian 

Journal of Development Research, 32(1). doi: 

10.4314/ejdr.v32i1.68599 

Bastiaanssen, W. G. M., & Bos, M. G. (1999). 

Irrigation performance indicators based on 

remotely sensed data: A review of literature. 

Irrigation and Drainage Systems, 13(4), 291–

311. doi: 10.1023/A:1006355315251 

Bastiaanssen, W., Mobin-ud-Din Ahmad, & 

Zubair Tahir. (2003). Upscaling water 

productivity in irrigated agriculture using 

remote-sensing and GIS technologies. In W. 

Kijne, R. Barker, & D. Molden (Eds.), Water 

productivity in agriculture: limits and 



 A systematic review of performance assessment in canal irrigation systems…………                           270  

opportunities for improvement (pp. 289–300). 

CAB International. doi: 

10.1079/9780851996691.0289 

Basukala, A. K., Eschenbach, A., & Rasche, L. 

(2024). Effect of irrigation canal conveyance 

efficiency enhancement on crop productivity 

under climate change in Nepal. Environmental 

Monitoring and Assessment, 196(12). doi: 

10.1007/s10661-024-13405-4 

Belarbi, Z., & El Younoussi, Y. (2025). A Review 

on Optimizing Water Management in 

Agriculture through Smart Irrigation Systems 

and Machine Learning. In B. Benhala, A. 

Lachhab, A. Raihani, M. Qbadou, & A. Sallem 

(Eds.), ICEGC’2024. E3S Web of 

Conferences. doi: 

10.1051/e3sconf/202560100078 

Blatchford, M., M. Mannaerts, C., Zeng, Y., 

Nouri, H., & Karimi, P. (2020). Influence of 

Spatial Resolution on Remote Sensing-Based 

Irrigation Performance Assessment Using 

WaPOR Data. Remote Sensing, 12(18), 2949. 

doi: 10.3390/rs12182949 

Bos, M. G., & Nugteren, J. (1990). On Irrigation 

Efficiencies. 

https://www.researchgate.net/profile/Mg-

Bos/publication/44399513_On_irrigation_eff

iciencies_M_G_Bos_J_Nugteren/links/548ec

86e0cf225bf66a633ce/On-irrigation-

efficiencies-M-G-Bos-J-Nugteren.pdf 

Bos, M. G., Burton, M. A., & Molden, D. J. 

(2005). Irrigation and Drainage Performance 

Assessment Practical Guidelines. 

https://www.icid.org/Guidelines_Molden200

5.pdf 

Bos, M. G., Wolters, W., Drovandi, A., & 

Morabito, J. A. (1991). The Viejo Retamo 

secondary canal - Performance evaluation 

case study: Mendoza, Argentina. Irrigation 

and Drainage Systems, 5(1), 77–88. doi: 

10.1007/BF01102778 

Burt, C. M., & Styles, S. W. (1998). Modern 

Water Control and Management Practices in 

Irrigation: Impact on Performance. In 

Proceedings of the Expert Consultation on 

Modernization of Irrigation Schemes: Past 

Experiences and Future Options (Issue 

October). 

http://www.itrc.org/papers/modernwatercontr

ol.htm 

Cerjak, M., Medici, M., Faletar, I., Sundeep, J. V., 

& Canavari, M. (2025). Adoption of mobile-

based agricultural extension services: 

evidence from South India. Journal of Rural 

Studies, 120, 103851. doi: 

10.1016/j.jrurstud.2025.103851 

Chen, H.-Y., Sharma, K., Sharma, C., & Sharma, 

S. (2023). Integrating explainable artificial 

intelligence and blockchain to smart 

agriculture: Research prospects for decision 

making and improved security. Smart 

Agricultural Technology, 6, 100350. doi: 

10.1016/j.atech.2023.100350 

Chukalla, A. D., Mul, M. L., van der Zaag, P., van 

Halsema, G., Mubaya, E., Muchanga, E., den 

Besten, N., & Karimi, P. (2022). A framework 

for irrigation performance assessment using 

WaPOR data: the case of a sugarcane estate in 

Mozambique. Hydrology and Earth System 

Sciences, 26(10), 2759–2778. doi: 

10.5194/hess-26-2759-2022 

CWC. (2002). Guidelines for Performance 

Evaluation of Irrigation System. 

https://cwc.gov.in/sites/default/files/guideline

s-performance-evaluation-irrigation-system-

2002compressed.pdf 

Derardja, B., Khadra, R., Abdelmoneim, A. A. A., 

El-Shirbeny, M. A., Valsamidis, T., De 

Pasquale, V., Deflorio, A. M., & Volden, E. 

(2024). Advancements in Remote Sensing for 

Evapotranspiration Estimation: A 

Comprehensive Review of Temperature-

Based Models. Remote Sensing, 16(11), 1927. 

doi: 10.3390/rs16111927 

El Hachimi, J., El Harti, A., Lhissou, R., 

Ouzemou, J.-E., Chakouri, M., & Jellouli, A. 

(2022). Combination of Sentinel-2 Satellite 

Images and Meteorological Data for Crop 

Water Requirements Estimation in Intensive 

Agriculture. Agriculture, 12(8), 1168. doi: 

10.3390/agriculture12081168 

El-Agha, D. E., Molden, D. J., & Ghanem, A. M. 

(2011). Performance assessment of irrigation 

water management in old lands of the Nile 

delta of Egypt. Irrigation and Drainage 

Systems, 25(4), 215–236. doi: 

10.1007/s10795-011-9116-z 

Elshaikh, A. E., Jiao, X., & Yang, S. hong. (2018). 

Performance evaluation of irrigation projects: 

Theories, methods, and techniques. 



 271.  Rajaput et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 254-276, 2025 

Agricultural Water Management, 203, 87–96. 

doi: 10.1016/j.agwat.2018.02.034 

Er-Rami, M., D’Urso, G., Lamaddalena, N., 

D’Agostino, D., & Belfiore, O. R. (2021). 

Analysis of irrigation system performance 

based on an integrated approach with Sentinel-

2 satellite images. Journal of Agricultural 

Engineering, 52(2). doi: 

10.4081/jae.2021.1170 

FAO, & DWFI. (2015). Yield gap analysis of 

field crops – Methods and case studies. 

https://openknowledge.fao.org/server/api/cor

e/bitstreams/bd44e093-8f41-4b99-875a-

1387a1b1dd8d/content 

FAO. (2013). Climate-smart Agriculture 

Sourcebook Book. 

https://www.fao.org/3/i3325e/i3325e.pdf 

FAO. (2020). The State of Food and Agriculture 

2020. Overcoming water challenges in 

agriculture. doi: 10.4060/cb1447en 

Farig, M., Shimizu, K., & Hassan, W. H. A. El. 

(2025). Artificial Intelligence in Agricultural 

Water Management Research: Literature 

Review and Research Agenda. International 

Journal of Advanced Engineering, 

Management and Science, 11(1), 126–134. 

doi: 10.22161/ijaems.111.9 

Gamage, A., Gangahagedara, R., Subasinghe, S., 

Gamage, J., Guruge, C., Senaratne, S., 

Randika, T., Rathnayake, C., Hameed, Z., 

Madhujith, T., & Merah, O. (2024). 

Advancing sustainability: The impact of 

emerging technologies in agriculture. Current 

Plant Biology, 40, 100420. doi: 

10.1016/j.cpb.2024.100420 

Gowing, J. (1998). Effective Monitoring of Canal 

Irrigation with Minimum or No Flow 

Measurement. In Water and the Environment 

(1st ed.). CRC Press. 

https://www.taylorfrancis.com/chapters/mono

/10.1201/9781482272086-40/effective-

monitoring-canal-irrigation-minimum-flow-

measurement-john-gowing?context=ubx 

Han, C., Zhang, B., & Chen, H. (2019). Spatially 

distributed crop model based on remote 

sensing. Agricultural Water Management, 

218(March), 165–173. doi: 

10.1016/j.agwat.2019.03.035 

Hussain, I., Khan, M. Z., Rafiq, N., & Bashir, S. 

(2025). Promoting the Adaptation of Climate-

Smart Agriculture Practices Among Farming 

Communities. In Climate Smart Agriculture 

for Future Food Security (pp. 223–255). 

Springer Nature Singapore. doi: 10.1007/978-

981-96-4499-5_9 

IFPRI. (2019). 2019 Global food policy report. 

doi: 10.2499/9780896293502 

Isidoro, D., Quílez, D., & Aragüés, R. (2004). 

Water balance and irrigation performance 

analysis: La Violada irrigation district (Spain) 

as a case study. Agricultural Water 

Management, 64(2), 123–142. doi: 

10.1016/S0378-3774(03)00196-3 

Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, 

S., Kummu, M., & Lucht, W. (2015). Water 

savings potentials of irrigation systems: global 

simulation of processes and linkages. 

Hydrology and Earth System Sciences, 19(7), 

3073–3091. doi: 10.5194/hess-19-3073-2015 

Jiang, Y., Xu, X., Huang, Q., Huo, Z., & Huang, 

G. (2015). Assessment of irrigation 

performance and water productivity in 

irrigated areas of the middle Heihe River basin 

using a distributed agro-hydrological model. 

Agricultural Water Management, 147, 67–81. 

doi: 10.1016/j.agwat.2014.08.003 

Kaini, S., Harrison, M. T., Gardner, T., & Sharma, 

A. K. (2024). Comprehensive Assessment of 

Climate Change Impacts on River Water 

Availability for Irrigation, Wheat Crop Area 

Coverage, and Irrigation Canal Hydraulic 

Capacity of Large-Scale Irrigation Scheme in 

Nepal. Water (Switzerland), 16(18). doi: 

10.3390/w16182595 

Kazem Shahverdi. (2025). Supervised learning to 

manage irrigation canals’ operation. Journal of 

Water and Irrigation Management, 14(4). 

https://jwim.ut.ac.ir/article_99940_154e0944

fad77aa4ef8c5aeac8f79eb5.pdf?lang=en 

Kharrou, M. H., Le Page, M., Chehbouni, A., 

Simonneaux, V., Er-Raki, S., Jarlan, L., 

Ouzine, L., Khabba, S., & Chehbouni, G. 

(2013). Assessment of Equity and Adequacy 

of Water Delivery in Irrigation Systems Using 

Remote Sensing-Based Indicators in Semi-

Arid Region, Morocco. Water Resources 

Management, 27, 4697–4714. doi: 

10.1007/s11269-013-0438-5 

Khaspuria, G., Khandelwal, A., Agarwal, M., 

Bafna, M., Yadav, R., & Yadav, A. (2024). 



 A systematic review of performance assessment in canal irrigation systems…………                           272  

Adoption of Precision Agriculture 

Technologies among Farmers: A 

Comprehensive Review. Journal of Scientific 

Research and Reports, 30(7), 671–686. doi: 

10.9734/jsrr/2024/v30i72180 

Kori, P., & Umesh, K. B. (2020). Impact of 

Irrigation Water Shortage on Yield, Income 

and Employment of Farm Households in 

Tungabhadra Command Area of Karnataka. 

Asian Journal of Agricultural Extension, 

Economics & Sociology, 102–110. doi: 

10.9734/ajaees/2020/v38i130302 

Korkmaz, N., Avci, M., Unal, H. B., Asik, S., & 

Gunduz, M. (2009). Evaluation of the Water 

Delivery Performance of the Menemen Left 

Bank Irrigation System Using Variables 

Measured On-Site. Journal of Irrigation and 

Drainage Engineering, 135(5), 633–642. doi: 

10.1061/(asce)ir.1943-4774.0000053 

Krishan, R., Nikam, B. R., Pingale, S. M., 

Chandrakar, A., & Khare, D. (2018). Analysis 

of trends in rainfall and dry/wet years over a 

century in the Eastern Ganga Canal command. 

Meteorological Applications, 25, 561–574. 

doi: 10.1002/met.1721 

Kulkarni, T. (2020). The lucid dream of achieving 

equitable water distribution in India: A 

critique. International Journal of 

Multidisciplinary Research and Growth 

Evaluation, 1(4), 44–49. doi: 

10.54660/.IJMRGE.2020.1.4.44-49 

Kumar, K. A., Reddy, M. D., Uma Devi, M., 

Narender, N., Neelima, T. L., Ramulu, V., Rao, 

V. P., & Raghavaiah, R. (2014). Irrigation 

Performance Assessment of Left Bank Canal, 

Nagarjuna Sagar Project, India During Rabi 

Using Remote Sensing and GIS. 

Agrotechnology, 03(01). doi: 10.4172/2168-

9881.1000122 

Kumar, S. V., M. Mocko, D., Wang, S., Peters-

Lidard, C. D., & Borak, J. (2019). 

Assimilation of Remotely Sensed Leaf Area 

Index into the Noah-MP Land Surface Model: 

Impacts on Water and Carbon Fluxes and 

States over the Continental United States. 

Journal of Hydrometeorology, 20(7), 1359–

1377. doi: 10.1175/JHM-D-18-0237.1 

Li, M., Wang, P., Tansey, K., Guo, F., & Zhou, J. 

(2025). Improved leaf area index 

reconstruction in heavily cloudy areas: A 

novel deep learning approach for SAR-Optical 

fusion integrating spatiotemporal features. 

International Journal of Applied Earth 

Observation and Geoinformation, 142, 

104745. doi: 10.1016/j.jag.2025.104745 

Li, P., & Ren, L. (2019). Evaluating the effects of 

limited irrigation on crop water productivity 

and reducing deep groundwater exploitation in 

the North China Plain using an agro-

hydrological model: II. Scenario simulation 

and analysis. Journal of Hydrology, 574(2), 

715–732. doi: 10.1016/j.jhydrol.2019.03.034 

Liu, L., Guo, Z., & Huang, G. (2018). Evaluation 

of water productivity under climate change in 

irrigated areas of the arid Northwest China 

using an assemble statistical downscaling 

method and an agro-hydrological model. 

Proceedings of the International Association 

of Hydrological Sciences, 379, 393–402. doi: 

10.5194/piahs-379-393-2018 

Maggo, G. (2025). The Ethics of AI in Water 

Management. Pani Ki Kahani. 

https://panikikahani.org/research/The-Ethics-

of-AI-in-Water-Management/33863/ 

Makin, V. I. W. (2023). ICID Guidelines on 

Modernization. International Symposium on 

Pathways and Technologies for Modern 

Irrigation Services. https://icid-

ciid.org/icid_data_web/25Cong-International-

Symposium.pdf 

Mao, Y., Van Niel, T. G., & McVicar, T. R. (2023). 

Reconstructing cloud-contaminated NDVI 

images with SAR-Optical fusion using spatio-

temporal partitioning and multiple linear 

regression. ISPRS Journal of Photogrammetry 

and Remote Sensing, 198, 115–139. doi: 

10.1016/j.isprsjprs.2023.03.003 

Maselli, F., Battista, P., Chiesi, M., Rapi, B., 

Angeli, L., Fibbi, L., Magno, R., & Gozzini, 

B. (2020). Use of Sentinel-2 MSI data to 

monitor crop irrigation in Mediterranean 

areas. International Journal of Applied Earth 

Observation and Geoinformation, 93, 102216. 

doi: 10.1016/j.jag.2020.102216 

Mdemu, M., Kissoly, L., Kimaro, E., Bjornlund, 

H., Ramshaw, P., Pittock, J., Wellington, M., 

& Bongole, S. (2025). Climate change 

adaptation benefits from rejuvenated 

irrigation systems at Kiwere and Magozi 

schemes in Tanzania. International Journal of 



 273.  Rajaput et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 254-276, 2025 

Water Resources Development, 41(2), 325–

349. doi: 10.1080/07900627.2024.2397400 

Mekonnen, Y. G., Alamirew, T., Tadesse, K. B., & 

Chukalla, A. D. (2024). Monitoring small-

scale irrigation performance using remote 

sensing in the Upper Blue Nile Basin, 

Ethiopia. Agricultural Water Management, 

300. doi: 10.1016/j.agwat.2024.108928 

Mishra, V., Denis, D., Mishra, H., & Kumar, M. 

(2023). Assessing Irrigation Performance of a 

Canal Command Area Using Space and 

Ground Observation. A Case Study of Belan 

Canal, Prayagraj. In A. Ramdane-Cherif, T. P. 

Singh, R. Tomar, T. Choudhury, & J. Um 

(Eds.), Machine Intelligence and Data Science 

Applications (MIDAS 2022) (pp. 491–505). 

Springer. doi: 10.1007/978-981-99-1620-

7_38 

Mkhwenkwana, A., Matongera, T. N., Blaauw, 

C., & Mutanga, O. (2025). A critical review on 

the applications of Sentinel satellite datasets 

for soil moisture assessment in crop 

production. International Journal of Applied 

Earth Observation and Geoinformation, 141, 

104647. doi: 10.1016/j.jag.2025.104647 

Mohammedshum, A. A., Mannaerts, C. M., 

Maathuis, B. H. P., & Teka, D. (2023). 

Integrating Socioeconomic Biophysical and 

Institutional Factors for Evaluating Small-

Scale Irrigation Schemes in Northern 

Ethiopia. Sustainability, 15(2). doi: 

10.3390/su15021704 

Molden, D. (Ed.). (2013). Water for Food, Water 

for Life: A Comprehensive Assessment of 

Water Management in Agriculture. Earthscan, 

and Columbo: International Water 

Management Institute. doi: 

10.4324/9781849773799 

Molden, D. J., & Gates, T. K. (1990). 

Performance Measures for Evaluation of 

Irrigation-Water-Delivery Systems. Journal of 

Irrigation and Drainage Engineering, 116(6), 

804–823. doi: 10.1061/(ASCE)0733-

9437(1990)116:6(804) 

Molden, D., Sakthivadivel, R., Perry, C. J., 

Fraiture, C. de, & Kloezen, W. H. (1998). 

Indicators for Comparing Performance of 

Irrigated Agricultural Systems. Colombo, Sri 

Lanka: International Water Management 

Institute (IWMI). 

https://hdl.handle.net/10568/39803 

Murray-Rust, H., & Snellen, W. Bart. (1993). 

Irrigation system performance assessment and 

diagnosis. Colombo, Sri Lanka. International 

Irrigation Management Institute. 

https://cgspace.cgiar.org/server/api/core/bitstr

eams/e0aca2cf-0cf2-47e1-8a99-

353ff0f69023/content 

Muturi, J. W., Ndehedehe, C. E., & Kennard, M. 

J. (2025). A review of the use of remote 

sensing techniques in assessing irrigation 

water use. Agricultural Water Management, 

319, 109759. doi: 

10.1016/j.agwat.2025.109759 

Mwadzingeni, L., Mugandani, R., & Mafongoya, 

P. L. (2022). Socio-demographic, institutional 

and governance factors influencing adaptive 

capacity of smallholder irrigators in 

Zimbabwe. PLOS ONE, 17(8), e0273648. doi: 

10.1371/journal.pone.0273648 

Namara, R. E., Hanjra, M. A., Castillo, G. E., 

Ravnborg, H. M., Smith, L., & Van Koppen, 

B. (2010). Agricultural water management and 

poverty linkages. Agricultural Water 

Management, 97(4), 520–527. doi: 

10.1016/j.agwat.2009.05.007 

Nigam, J., Raju, T. B., & Pannala, R. K. P. K. 

(2023a). Performance Evaluation of Irrigation 

Canals Using Data Envelopment Analysis for 

Efficient and Sustainable Irrigation 

Management in Jharkhand State, India. 

Energies, 16(14). doi: 10.3390/en16145490 

Nigam, J., Totakura, B. R., & Kumar, R. (2023b). 

Assessment of Barriers to Canal Irrigation 

Efficiency for Sustainable Harnessing of 

Irrigation Potential. Water, 15(14), 2558. doi: 

10.3390/w15142558 

Nikam, B. R., Garg, V., Thakur, P. K., & 

Aggarwal, S. P. (2020). Application of Remote 

Sensing and GIS in Performance Evaluation of 

Irrigation Project at Disaggregated Level. 

Journal of the Indian Society of Remote 

Sensing, 48(7), 979–997. doi: 

10.1007/s12524-020-01128-1 

Niu, J., Liu, Q., Kang, S., & Zhang, X. (2018). 

The response of crop water productivity to 

climatic variation in the upper-middle reaches 

of the Heihe River basin, Northwest China. 



 A systematic review of performance assessment in canal irrigation systems…………                           274  

Journal of Hydrology, 563, 909–926. doi: 

10.1016/j.jhydrol.2018.06.062 

Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., 

Tan, Y. C., Mahmoud, M., Jaber, H., & 

Ramadan, M. (2022). An overview of smart 

irrigation systems using IoT. Energy Nexus, 7, 

100124. doi: 10.1016/j.nexus.2022.100124 

Orkodjo, T. P., Kranjac-Berisavijevic, G., & 

Abagale, F. K. (2022). Impact of climate 

change on future availability of water for 

irrigation and hydropower generation in the 

Omo-Gibe Basin of Ethiopia. Journal of 

Hydrology: Regional Studies, 44, 101254. 

doi: 10.1016/j.ejrh.2022.101254 

Page, M. J., McKenzie, J. E., Bossuyt, P. M., 

Boutron, I., Hoffmann, T. C., Mulrow, C. D., 

Shamseer, L., Tetzlaff, J. M., Akl, E. A., 

Brennan, S. E., Chou, R., Glanville, J., 

Grimshaw, J. M., Hróbjartsson, A., Lalu, M. 

M., Li, T., Loder, E. W., Mayo-Wilson, E., 

McDonald, S., … Moher, D. (2021). The 

PRISMA 2020 statement: an updated 

guideline for reporting systematic reviews. 

BMJ. doi: 10.1136/bmj.n71 

Pereira, L. S., Cordery, I., & Iacovides, I. (2012). 

Improved indicators of water use performance 

and productivity for sustainable water 

conservation and saving. Agricultural Water 

Management, 108, 39–51. doi: 

10.1016/j.agwat.2011.08.022 

Rasul, G. (2016). Managing the food, water, and 

energy nexus for achieving the Sustainable 

Development Goals in South Asia. 

Environmental Development, 18, 14–25. doi: 

10.1016/j.envdev.2015.12.001 

Rosa, L., & Sangiorgio, M. (2025). Global water 

gaps under future warming levels. Nature 

Communications, 16(1), 1192. doi: 

10.1038/s41467-025-56517-2 

Rudraswamy, G. K., & Umamahesh, N. V. 

(2024). Investigating the impact of climate 

change on irrigation and crop water 

requirements of Bhadra and Tungabhadra 

command area: A CMIP-6 GCMs and 

CROPWAT 8.0 approach. Water Supply, 

24(2), 625–642. doi: 10.2166/ws.2024.022 

Sakthivadivel, R., Thiruvengadachari, S., 

Amerasinghe, U., Bastiaanssen, W. G. M., & 

Molden, D. (1999). Performance evaluation of 

the Bhakra Irrigation System, India, using 

remote sensing and GIS techniques. Colombo, 

Sri Lanka: International Water Management 

Institute. https://hdl.handle.net/10568/39814 

Schultz, B., Thatte, C. D., & Labhsetwar, V. K. 

(2005). Irrigation and drainage. Main 

contributors to global food production. 

Irrigation and Drainage, 54, 263–278. doi: 

10.1002/ird.170 

Small, L. E., & Svendsen, M. (1990). A 

framework for assessing irrigation 

performance. Irrigation and Drainage 

Systems, 4, 283–312. doi: 

10.1007/BF01103710 

Somda, W., Tischbein, B., & Bogardi, J. J. (2020). 

Water use inside inland valleys agro-systems 

in the Dano basin, Burkina Faso. Water Cycle, 

1, 88–97. doi: 10.1016/j.watcyc.2020.06.003 

Tahir, Z., & Habib, Z. (2000). Land and Water 

Productivity: Trends across Punjab Canal 

Commands. Colombo, Sri Lanka: 

International Water Management Institute. 

https://hdl.handle.net/10568/39235 

Tiruye, A., Ditthakit, P., Pham, Q. B., 

Wipulanusat, W., Weesakul, U., & Thongkao, 

S. (2023). Assessing Water Consumption 

Pattern and Delivery Irrigation Performance 

Indicators Using the Wapor Portal Under 

Data-Limited Conditions, Ethiopia. 

Engineered Science. doi: 10.30919/es1046 

Uday, G., Purse, B. V., Kelley, D. I., Vanak, A., 

Samrat, A., Chaudhary, A., Rahman, M., & 

Gerard, F. F. (2025). Radar versus optical: The 

impact of cloud cover when mapping seasonal 

surface water for health applications in 

monsoon-affected India. PLOS ONE, 20(1), 

e0314033. doi: 

10.1371/journal.pone.0314033 

UN. (2022). The sustainable development goals 

report 2022. In United Nations publication 

issued by the Department of Economic and 

Social Affairs. 

https://unstats.un.org/sdgs/report/2022/The-

Sustainable-Development-Goals-Report-

2022.pdf 

UNESCO. (2021). The United Nations World 

Water Development Report 2021: Valuing 

Water. 

https://unesdoc.unesco.org/ark:/48223/pf0000

375724 



 275.  Rajaput et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 254-276, 2025 

Uniyal, B., & Dietrich, J. (2021). Simulation of 

Irrigation Demand and Control in Catchments 

– A Review of Methods and Case Studies. 

Water Resources Research, 57(7), 1–21. doi: 

10.1029/2020WR029263 

Uniyal, B., Dietrich, J., Vu, N. Q., Jha, M. K., & 

Arumí, J. L. (2019). Simulation of regional 

irrigation requirement with SWAT in different 

agro-climatic zones driven by observed 

climate and two reanalysis datasets. Science of 

the Total Environment, 649, 846–865. doi: 

10.1016/j.scitotenv.2018.08.248 

Van Dam, J. C., Singh, R., Bessembinder, J. J. E., 

Leffelaar, P. A., Bastiaanssen, W. G. M., 

Jhorar, R. K., Kroes, J. G., & Droogers, P. 

(2006). Assessing options to increase water 

productivity in irrigated river basins using 

remote sensing and modelling tools. 

International Journal of Water Resources 

Development, 22(1), 115–133. doi: 

10.1080/07900620500405734 

Vandersypen, K., Bengaly, K., Keita, A. C. T., 

Sidibe, S., Raes, D., & Jamin, J. Y. (2006). 

Irrigation performance at tertiary level in the 

rice schemes of the Office du Niger (Mali): 

Adequate water delivery through over-supply. 

Agricultural Water Management, 83(1–2), 

144–152. doi: 10.1016/j.agwat.2005.11.003 

Wakweya, R. B. (2023). Challenges and 

prospects of adopting climate-smart 

agricultural practices and technologies: 

Implications for food security. Journal of 

Agriculture and Food Research, 14, 100698. 

doi: 10.1016/j.jafr.2023.100698 

Waqas, M. M., Waseem, M., Ali, S., Kebede Leta, 

M., Noor Shah, A., Awan, U. K., Hamid 

Hussain Shah, S., Yang, T., & Ullah, S. (2021). 

Evaluating the spatio-temporal distribution of 

irrigation water components for water 

resources management using geo-informatics 

approach. Sustainability (Switzerland), 13. 

doi: 10.3390/su13158607 

Ward, C., Burt, C., Valieva, S., Shawky, A., 

Casanova, D., & Meerbach, D. (2024). 

Innovation and Modernization in Irrigation 

and Drainage: A Guide to Why, What, and 

How. World Bank, Washington, DC. 

https://documents1.worldbank.org/curated/en

/099811001272528137/pdf/IDU-5d7c851f-

f0c2-4af3-bad1-6a4717b6f888.pdf 

Woznicki, S. A., Nejadhashemi, A. P., & 

Parsinejad, M. (2015). Climate change and 

irrigation demand: Uncertainty and 

adaptation. Journal of Hydrology: Regional 

Studies, 3, 247–264. doi: 

10.1016/j.ejrh.2014.12.003 

Xue, J., Anderson, M. C., Gao, F., Hain, C., Yang, 

Y., Knipper, K. R., Kustas, W. P., & Yang, Y. 

(2021). Mapping Daily Evapotranspiration at 

Field Scale Using the Harmonized Landsat 

and Sentinel-2 Dataset, with Sharpened VIIRS 

as a Sentinel-2 Thermal Proxy. Remote 

Sensing, 13(17), 3420. doi: 

10.3390/rs13173420 

Yapa, L. G. D. S., Rainis, R., Abdullah, A. L., & 

Hemakumara, G.P.T.S. (2020). Head-tail 

disparity in irrigation management in Sri 

Lanka: A review of empirical evidence. 

Malaysian Journal of Society and Space, 

16(4). doi: 10.17576/geo-2020-1604-04 

Younes, A., Elassad, Z. E. A., Meslouhi, O. El, 

Elassad, D. E. A., & Abdel Majid, E. (2024). 

The application of machine learning 

techniques for smart irrigation systems: A 

systematic literature review. Smart 

Agricultural Technology, 7, 100425. doi: 

10.1016/j.atech.2024.100425 

Zafar, A., Prathapar, S., Bastiaanssen, W., Awan, 

W. K., Cai, X., & Manunta, P. (2021). 

Optimization of Canal Management Using 

Satellite Measurements (0 ed., ADB Briefs). 

Asian Development Bank. doi: 

10.22617/BRF210022-2 

Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, 

L., Ren, H., Wu, B., & Ye, L. (2022). A review 

of the application of machine learning in water 

quality evaluation. Eco-Environment & 

Health, 1(2), 107–116. doi: 

10.1016/j.eehl.2022.06.001 


