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Abstract 
Climate variability poses a pressing shift to the hydrological cycle and diminishing water resources availability. 

This shift is a prevalent challenge for day-to-day activities in the Olifants River, South Africa. This study assessed 

rainfall, minimum and maximum temperature variability, trend analysis, and change point detection in the Olifants 

River using numerous statistical analysis methods, such as coefficient of variation, Kurtosis, skewness, Pettitt, 

Buishand, von Neumann, Standard normal homogeneity test (SNHT), Mann-Kendall, and Sen's slope tests for the 

period from 1988 to 2014. The results showed that annual rainfall in most stations had moderate variation, while 

limited stations were negatively skewed and not normally distributed. Most of the stations, such as X1E003, 

B5E004, and B1E003, showed less variability (CV < 20), while the rest of the stations showed moderate variation 

ranges (20 < CV < 30) for rainfall datasets. The results of kurtosis and skewness ranged from -0.41 to 1.10 and -

0.12 to 0.46 for rainfall; -0.03 to 0.92 and -0.61 to -0.17 for maximum temperature; and 0.24 to 1.61 and -0.18 to 

0.14 for minimum temperature, respectively. Furthermore, the majority of stations were negatively skewed for 

annual maximum and minimum temperatures. Unexpectedly, the homogeneity tests for annual rainfall and 

maximum temperature depicted favorable results, while a few stations were found to be non-homogeneous for 

minimum temperature. Specifically, the trend analysis indicators such as Kendall's tau, S, p-value and Sen’s slope 

showed ranges from -0.03 to 0.15, -11 to 53, 0.28 to 1.0, and -1.95 to 4.98 for rainfall; 0.08 to 0.15, 29 to 51, 0.30 

to 0.56, and 0.009 to 0.025 for maximum temperature; and 0.13 to 0.24, 45 to 85, 0.08 to 0.36, 0.01 to 0.014 for 

minimum temperature, respectively. The trend analysis results revealed that the highest percentage of stations were 

showing an increasing trend, while the magnitude varied slightly for annual rainfall, maximum, and minimum 

temperatures. Sustainable and innovative climate variability mitigation measures must be initiated to reduce the 

effects of variability in agricultural productivity and environmental changes. Future researchers can investigate the 

effects of natural and anthropogenic activities on water resources and their implications for water availability. 
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1. Introduction 

Water occurs under natural phenomena and 

covers a diverse hydrological cycle by changing 

from one state to another (Thapa et al., 2017). 

Furthermore, the hydrological water balance was 

affected due to rising anthropogenic and natural 

activities that may trigger hydrological extremes 

and undermine water availability (Tefera, 2017; 

Wakigari, 2017; Ayivi & Jha, 2018). The river is 

one of the main pillars of the hydrological 

component, which requires a comprehensive and 

sustainable development plan to develop, govern, 

manage, and regulate water resources for 

economic growth (Makungo et al., 2010; Jung et 

al., 2017; Pathak et al., 2019). Water is one of the 

scarce resources and has to be utilized optimally 

for the sustainable development of any country 

(Pathak et al., 2019). Recently, water resources 

have been extracted extensively to fulfil the 

drastically increasing water demand caused by 

rapid population growth and urbanization (Igibah 

& Tanko, 2019; Teshome et al., 2020). Water 

shortage is becoming a challenge on both local 

and global scales, while it is a significant pillar in 

achieving the UN’s 2030 agenda (Aredo et al., 

2024b). Water resources availability is 

challenged due to erratic climate patterns and 

anthropogenic activities (Loliyana & Patel, 2018; 

Aredo et al., 2023a). Climate change and 

variability are driving factors for vulnerabilities 

of hydrological extremes and changing water 

resources availability (Singh et al., 2021). 

Climate variability must be examined before 

conducting any hydrological investigation and 

development. For instance, if rainfall variability 

increases in the region, this may reduce surface 

runoff due to the probability of high infiltration 

capacity or increasing evapotranspiration (Zhao 

et al., 2013).  

In different parts of the world, trend analysis 

findings showed varied rainfall trends (Bartels et 

al., 2019; Gao et al., 2020). The temperature 

records in the Black Volta basin show an 

increasing trend, while the upstream region in 

annual rainfall and streamflow showed declining 

trends (Abungba et al., 2020). Urbanisation, land 

degradation, and climatic factors might all 

contribute to a rising streamflow trend (Tadese et 

al., 2019). The temperature and streamflow were 

rising substantially in the Blue Nile basin, while 

there was no significant trend in annual rainfall 

(Tekleab et al., 2013; Abera & Abegaz, 2020). 

Africa was increasingly dealing with the 

challenges of unpredictable rainfall patterns and 

significant swings in water resources due to the 

continent's skyrocketing water demands and 

variability (Aredo et al., 2023b; Aredo et al., 

2024a). Africa’s climate variables, such as 

rainfall, potential evapotranspiration, and 

temperature, fluctuate considerably (Tekleab et 

al., 2014; Cherinet et al., 2019; Tadese et al., 

2019). Rainfall fluctuation with humid to arid 

climatic zone ranges, gentle terrain, and spatio-

temporal hydrogeological variability will affect 

agricultural productivity (Nannawo et al., 2022). 

Climate variability analysis will produce insights 

into rainfall, temperature, and hydrology (Shahid 

& Rahman, 2021). Additionally, climate 

variability impacts the frequency and severity of 

extreme climatic events (Tehrani et al., 2019; 

Singh et al., 2021). Hydrological extremes were 

becoming prevalent across Africa, while flood-

induced hazards have been underestimated in 

areas with less annual rainfall (Erena & Worku, 

2019). Increasing temperature and rainfall 

variability affect small-scale farmers' agricultural 

production (Alashan, 2020; Nasir et al., 2021). 

The study's findings in South Africa’s Limpopo 

River Basin depict increasing rainfall and 

maximum temperature trends, while the 

minimum temperature declined (Mosase & 

Ahiablame, 2018). Furthermore, in South Africa, 

the climate variability and trends were observed 

in numerous areas such as the Rietspruit sub-

basin (Banda et al., 2021), Limpopo Province 

(Adeola et al., 2019), and Upper Karoo (Harmse 

et al., 2021). Climate variability, changes, and 

trends were noticed in the study area, with a 

limited level of understanding in the literature 

review in the Olifants River basin, a basin 

instrumental for South African (Gauteng, 

Mpumalanga, and Limpopo provinces) and  

Mozambique (Nkhonjera, 2017; Nkhonjera et al., 

2021). If the country's development relies heavily 

on rain-fed agriculture, minimal rainfall 

fluctuation will affect agricultural productivity 

(Gedefaw et al., 2018; Mulugeta et al., 2019; 

Gonfa et al., 2022). Understanding hydro-climate 

trends at the basin or watershed levels is 

necessary for sustainable water resources 
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management and development (Bai et al., 2015; 

Sinha et al., 2018; Shahid & Rahman, 2021; 

Solaimani et al., 2021; Gonfa et al., 2022). Also, 

several studies were conducted on understanding 

climate variability, change detection, and trend 

analysis (Bailey et al., 2016; Bushira & 

Hernandez, 2019; Aredo et al., 2021a; Aredo et 

al., 2021b). Most studies were conducted on trend 

and variability analysis using 20 years of 

historical climate datasets, a limited period for 

comprehensive analysis (Shahid & Rahman, 

2021). 

The climate variability analysis will enhance 

agricultural productivity, water resource 

development, and management. The study area 

faces challenges due to climate variability, which 

demands a comprehensive evaluation of 

variability, change detection, and historical 

climate data trends. The most frequently used 

techniques for examining climate variability, 

change detection, and trend analysis were the 

coefficient of variation, Kurtosis, skewness, 

Pettitt, Buishand, von Neumann, SNHT, Mann-

Kendall, and Sen's slope tests (Fentaw et al., 

2019; Gulakhmadov et al., 2020; Nannawo et al., 

2022). However, little attention has been paid to 

studies on change detection, climate variability, 

and trend analysis in the Olifants River basin 

using climate time series datasets and statistical 

analysis tools, which might be insightful to 

understanding hydro-climate variables across the 

basin. There is limited understanding of the 

variability and trend of the historical rainfall and 

temperature datasets for the greater Olifants 

River basin (Nkhonjera, 2017). This study is 

unique in comprehensively evaluating climate 

variables variability in the less studied Olifants 

River basin using numerous techniques from 

1988 to 2014. This study aims to examine climate 

variability, change detection, and trend analysis 

using numerous statistical analysis techniques in 

the Olifants River, South Africa. 

 

2. Materials and Methods 

2.1. Study Area  

The Upper-Middle Olifants Catchment (UMOC) 

lies between 24º 38′ 53″ and 26º 37′ 45″ S latitude 

and 28º 02′ 56″ and 29º 59′ 22″ E longitude 

(Figure 1). The topography ranges from 823 m in 

the lower reach to 1868 m above mean sea level 

(m.a.s.l). The study area has been facing various 

annual rainfall and temperature variability. For 

instance, the annual precipitation is mainly 

received during the summer season, which falls 

within the 600 to 800 mm (Nkhonjera et al., 

2021). The mean annual temperature in the study 

area varied considerably with changing 

topography and land cover (Nkhonjera, 2017; 

Nkhonjera et al., 2021). UMOC is located in 

South Africa’s north-eastern areas and is a major 

tributary of the Limpopo River (Nkhonjera, 2017; 

Olabanji et al., 2020). 

 

2.2. Data analysis 

Climate datasets such as daily rainfall, maximum 

and minimum temperature were received from 

the South African Weather Service from 1988 to 

2014, for each meteorological station presented 

in Figure 1. The missing daily climate datasets 

were filled using the inverse distance weight 

(IDW). The IDW technique computes the average 

value for the ungauged station using records from 

nearby weighted stations (Hadi & Tombul, 2018; 

Pirani & Modarres, 2020). Furthermore, the 

variability of the climatic dataset was evaluated 

using the coefficient of variation, skewness to 

examine asymmetrical distributions, and kurtosis 

to estimate the total weight of tails in light of the 

overall distribution (Animashaun et al., 2020). 

2.3. Homogeneity tests 

The homogeneity analysis of mean annual 

rainfall, maximum and minimum temperature 

datasets for each station was evaluated using 

Pettitt, von Neumann, SNHT, and Buishand tests. 

Using collected climate data for the 

meteorological station, the study examined the 

homogeneity tests, and the results p-value was 

compared with alpha (=0.05), if the p-value was 

greater than alpha, it indicates that it's 

homogenous with a 95% level of significance 

(Daba et al., 2020; Gulakhmadov et al., 2020; 

Bekele et al., 2023). 
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Figure 1. The location map of Africa, South Africa (Olifant River Basin), and Upper Middle Olifants 

Catchment 

 

Pettitt Test  

The Pettitt test is used to identify a shift or change 

point in time series data (Pettitt, 1979; Fentaw et 

al., 2019; Gulakhmadov et al., 2020). The test 

employs a modified Mann-Whitney, Ut,N to 

determine if two sample sets X1,..., Xt and Xt+1,..., 

XN are all in the same population. The test 

statistic Ut,N was computed using equations 1 to 

4: 

𝑈𝑡,𝑁 = 𝑈𝑡−1,𝑁 +∑𝑠𝑔𝑛( 𝑋𝑡 − 𝑋𝑗)

𝑁

𝑗=1

 (1) 

where t = 2, 3, …, N and sgn function are given 

by: 

sgn(xi − xj) = {

 1        𝑖𝑓 𝑥𝑖 − 𝑥𝑗 > 0

0        𝑖𝑓 𝑥𝑖 − 𝑥𝑗 = 0

−1     𝑖𝑓 𝑥𝑖 − 𝑥𝑗 < 0

 (2) 

The test statistic measures the number of times a 

first-sample member outranks a second-sample 

member. The test statistic KN and the related 

probability (P) were shown as follows: 

KN = max1 ≤ t≤N|Ut,N| (3) 

P ≅ 2 exp {
−6(KN)

2

N3+N2
}   (4) 

where P is the probability of recognising a point 

change. A significant change of point in the time 
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series data is defined as a ‘P' value less than 0.05, 

with a 5% significance level to be used 

(Gulakhmadov et al., 2020). This study used the 

XLSTAT software to identify the shift in climate 

data at a 5% significance level.  

Buishand Test  

The Buishand test is a parametric technique and 

assumes that the data set is uniformly distributed 

or null, and the data's second hypothesis includes 

shifts (Buishand, 1982). Buishand's test was 

applied to variables based on the distributions 

(Buishand, 1982). Assume that x1...xm...xn are 

observed time series with a mean (𝑥̅)and 

adjusted partial summation was computed by 

using equation 5: 

𝑆𝑚 =∑(𝑥𝑖 − 𝑥̅)

𝑚

𝑖=1

 (5) 

If Sm oscillates about zero, the time series is 

homogeneous. Equation 6 was used to estimate 

the significant change in a time series (Buishand, 

1982): 

𝑅 =
𝑀𝑎𝑥(𝑆𝑚) − 𝑀𝑖𝑛(𝑆𝑚)

𝑥̅
 (6) 

SNHT  

The SNHT is commonly used to compare a set of 

ratios to a mean value (Daba et al., 2020). The 

average of the first m years was compared to the 

average across the last n-m years using the Tm 

statistic as shown in equation 7 (Animashaun et 

al., 2020): 

 𝑇𝑚 = 𝑚𝑧1̅ + (𝑛 −𝑚)𝑧2̅  (7) 

where s is the variance of the data,𝑧1̅ =
1

𝑚
∑

(𝑥𝑖−𝑥̅)

𝑠
𝑚
𝑖=1  and 𝑧2̅ =

1

𝑛−𝑚
∑

(𝑥𝑖−𝑥̅)

𝑠
𝑛
𝑖=𝑚+1 . The 

year m is the change point if the value of Tm is 

maximum. If the statistical result is higher than 

the critical value, which again is determined by 

the sample size n, then the null hypothesis should 

be rejected. 

Von Neumann test 

The Von Neumann test assesses the 

randomization and recognition of change points 

in time series data, and the test equation 8 is 

expressed as follows (Salehi et al., 2020): 

𝑁 =
∑ (𝑥𝑖 − 𝑥𝑖−1)
𝑛−1
𝑖=1

2

∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1

2  (8) 

The time series is homogeneous if the expected 

value of N is 2; otherwise, the value of N is less 

than 2, which shows a break (Kazemzadeh & 

Malekian, 2018). 

2.4. Trend analysis 

The Sen's slope and Mann-Kendall tests were 

used to detect the trend of the mean annual 

rainfall and temperature at each station in the 

study area (Asfaw et al., 2018; Adane et al., 

2020). The non-parametric Mann-Kendall test 

indicates the trend based on the standard normal 

statistic (Z) results. If the Z is positive, negative, 

or zero, the trend is growing, declining, or the null 

hypothesis is accepted, respectively (Mann, 

1945; Kendall, 1975; Gonfa et al., 2022; 

Nannawo et al., 2022). Sen's slope is frequently 

used to detect the magnitude and direction of 

trends in time series datasets and non-parametric 

data (Sen, 1968; Hussain et al., 2021). Positive or 

negative slope values indicate rising or declining 

trends, respectively (Nasir et al., 2021). 

Mann-Kendall test 

The existence of trends in time series data was 

examined using the Mann-Kendall (MK) test. 

MK is a rank-based, non-parametric test widely 

used to detect trends in time series in Ethiopia at 

the basin scale (Tekleab et al., 2014). The MK test 

is given as equation 9:  

𝑆 =  ∑ ∑ 𝑆𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 (9) 

where xi and xk are observed data with j > k, and 

the sign function is given as equation 10:  

𝑆𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘) = {

1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 > 0

0 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 = 0

−1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 < 0

 (10) 

For identically distributed, independent data with 

no tied elements, the variance var (S) and the 

most expected value, E(S), of the distribution are 

presented in Equation 11: 

𝑣𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
  (11) 

𝐸(𝑆) = 0  

If there is one or more tied (equal value), the 

standard deviation may be calculated as shown in 

Equation 13. 
𝑉𝐴𝑅(𝑆)

=
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑘(𝑘)(𝑘 − 1)(2𝑘 + 5)

𝑛
𝑖=1

18
 

 

(13

) 

where n = number of data values; tk is the number 

of tied elements of extent k. For a large sample 

size of over 10 data points, the standard normal 

test statistic was given as equation 14: 
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𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝐴𝑅(𝑠)
 𝑖𝑓 𝑆 < 0

 (14) 

The presence of a statistically significant trend is 

evaluated using the Z value at a 5% significance 

level. A positive Z indicates an increasing trend, 

and a negative value indicates a decreasing trend 

(when an alternative hypothesis H1 is accepted). 

When the Z value equals zero, it shows neither an 

increasing nor a decreasing trend in the data 

series (when the null hypothesis, H0, is accepted). 

Sen’s slope test 

Sen's slope has been frequently applied to 

estimate the magnitude of trends in time series 

data of climate variability of nonparametric data, 

and the Mann–Kendall test reveals the direction 

of significant trends, not the magnitude (Hussain 

et al., 2021). If there is a linear trend, the actual 

slope (shift in unit time) will be computed using 

Sen's slope, which uses equation 15 to estimate N 

pairs of data (Sen, 1968): 

𝜑𝑖 = 
(𝑋𝑗− 𝑋𝑘)

𝑗−𝑘
  For i = 1, 2… N  (15) 

Where Xj and Xk are data at time j and k (j > k), and the 

median of these N values of i is Sen’s slope, which is 

described by equation 16:  

𝜑𝑚𝑒𝑑 = {

𝜑
(
𝑁+1
2
)
             𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

𝜑
(
𝑁
2
)
+ 𝜑

(
𝑁+2
2
)

2
  𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 (16) 

The med sign denotes the reflection of data 

trends, whereas the value shows the steepness of 

the trend. The confidence interval med at a given 

probability should be obtained to evaluate 

whether the median slope is statistically distinct 

from zero. The Sen's slope (true slope) will be 

used to see a change in slope on the climatic and 

hydrological time series dataset in the Olifants 

River study area using the XLSTAT software. 

Positive or negative slope values indicate rising 

or declining trends, respectively (Nasir et al., 

2021). Generally, the XLSTAT software 

statistical analysis package was used to check the 

homogeneity, Mann-Kendall, and Sen's slope 

tests. 

3. Results and Discussion 

3.1. Variability analysis 

The statistical analysis was conducted to 

determine climate variability of mean annual 

rainfall and maximum and minimum 

temperatures for each station (Tables 1 and 2). 

The annual rainfall ranges from 690.21 to 837.13 

mm for seven rainfall stations in the UMOC, with 

a significant variation of Standard Deviation (SD) 

(Table 1). However, the coefficient of variation 

(CV) results for stations such as X1E003, 

B5E004, and B1E003 show less variability (CV 

< 20), while the rest of the stations show 

moderate variation ranges (20 < CV < 30) 

(Animashaun et al., 2020). The annual rainfall 

was negatively skewed for stations such as 

X1E003 and B1E003, while the kurtosis depicts 

that X1E003, B4E003, A2E013, and B5E004 

were not normally distributed (Table 1). In South 

Africa’s Rietspruit sub-basin, the variation 

coefficient of annual rainfall is mainly 

categorized into moderate variation ranges 

(Banda et al., 2021).

Table 1. Variability analysis results for the annual rainfall 

Statics X1E003 B2E001 B4E003 A2E013 B6E001 B5E004 B1E003 

Mean 725.96 690.21 811.80 690.50 720.35 580.90 837.13 

SD 136.72 189.50 163.36 167.11 148.20 109.36 160.64 

CV 18.83 27.45 20.12 24.20 20.57 18.83 19.19 

Kurtosis -0.38 1.10 -0.22 -0.02 0.00 -0.41 0.00 

Skewness -0.12 0.29 0.41 0.28 0.46 0.36 -0.06 

Minimum 467.43 251.60 545.28 348.92 449.82 385.38 454.89 

Maximum 987.43 1184.09 1176.56 1086.09 1045.23 824.48 1123.98 

Moreover, annual maximum and minimum 

temperature findings show slight deviation and 

variability (Table 2). The maximum temperature 

for all stations was negatively skewed, while 

B6E001 was not normally distributed (Table 2). 

Most stations were negatively skewed for annual 

minimum temperature assessment (Table 2). The 

X1E003 station’s coefficient of variation was 

higher than that of other stations for both annual 

maximum and minimum temperatures. The study 
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covering South Africa’s Eastern Cape, Gauteng, 

KwaZulu-Natal, Limpopo, and Mpumalanga 

provinces shows a considerable rainfall 

variability (Masingi & Maposa, 2021). 

Specifically, the rainfall variability was 

significant in the KwaZulu-Natal province 

(Ndlovu et al., 2021). The rainfall variability was 

also significantly high, while the maximum and 

minimum temperatures resulted in minimal 

variability in the Limpopo Province (Maluleke et 

al., 2024). Numerous studies highlighted 

significant rainfall and temperature variability 

worldwide (Akbar & Gheewala, 2020; 

Jayasekara et al., 2020; Praveen et al., 2020). The 

results recorded were comparable to historical 

climate variability throughout Africa, in general, 

and specifically in South Africa (Animashaun et 

al., 2020; Banda et al., 2021; Mosase & 

Ahiablame, 2018; Bekele et al., 2023).

 
Table 2. Variability analysis results for the annual temperature 

M
ax

im
u

m
 

T
em

p
er

at
u

re
 

Statistics X1E003 B2E001 B4E003 A2E013 B6E001 B5E004 B1E003 

Mean 23.00 24.86 27.76 24.60 27.59 28.15 22.44 

SD 0.96 0.83 0.84 0.88 0.80 0.74 0.90 

CV 4.17 3.35 3.02 3.58 2.91 2.62 4.03 

Kurtosis 0.21 0.35 0.92 0.52 -0.03 0.58 0.45 

Skewness -0.17 -0.43 -0.61 -0.34 -0.38 -0.32 -0.28 

Minimum 20.85 22.84 25.60 22.49 25.88 26.35 20.35 

Maximum 25.07 26.60 29.24 26.32 29.22 29.60 24.34 

M
ax

im
u

m
 

T
em

p
er

at
u

re
 

Mean 8.36 9.80 13.86 12.27 11.25 12.99 8.46 

SD 0.42 0.41 0.41 0.43 0.39 0.42 0.39 

CV 5.04 4.19 2.96 3.49 3.46 3.20 4.67 

Kurtosis 1.48 0.92 0.24 0.92 0.83 1.30 1.61 

Skewness 0.14 0.11 -0.09 0.01 -0.10 -0.11 -0.18 

Minimum 7.28 8.85 12.94 11.29 10.27 12.01 7.38 

Maximum 9.43 10.81 14.74 13.31 12.15 14.02 9.39 

 

 

 

3.2 Change point detection tests 

Homogeneity analysis (change point detection) 

for annual rainfall, maximum and minimum 

temperature time series datasets was evaluated 

using Pettitt, Buishand, von Neumann, and 

SNHT. Surprisingly, the annual rainfall and 

maximum temperature homogeneity test results 

were greater than alpha (=0.05) for all 

meteorological stations (Tables 3 and 4). This 

means that the annual precipitation and maximum 

temperature are homogeneous and have not 

deviated much from the historical rising trend. 

However, the minimum annual temperature 

analyses that were categorized as not 

homogeneous were B4E003, B6E001, B5E004, 

and B1E003 for Pettit; B6E001 for SHNT; and 

X1E003, B6E001, and B1E003 for Buishand 

tests (Table 4). The minimum temperature 

exhibited inhomogeneity in 1997 and 2002 for 

most of the tests and stations. Most 

meteorological stations fall within defined 

homogeneous category ranges (Bekele et al., 

2023). Like the Olifants River, most station 

rainfall and temperature data were homogenous 

in South Africa's Rietspruit sub-basin (Banda et 

al., 2021). Even though no study has clearly 

assessed the minimum temperature change point, 

increasing changes have been observed in the 

temperature pattern in the study area (Nkhonjera, 

2017; Mosase & Ahiablame, 2018; Olabanji et 

al., 2020; Nkhonjera et al., 2021). 
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Table 3. Homogeneity test results for the annual rainfall 

 

Station  

Pettitt SHNT Buishand von Neumann 

K t p-value T0 t p-value Q t p-value N 
p- 

value 

X1E003 62 2005 0.46 2.66 2005 0.72 4.07 2005 0.48 2.95 0.99 

B2E001 44 1994 0.81 5.56 2013 0.24 3.15 2000 0.73 1.74 0.21 

B4E003 66 2009 0.40 3.13 2011 0.54 3.55 2009 0.69 1.63 0.21 

A2E013 74 2005 0.24 3.27 1994 0.53 4.19 1994 0.31 1.86 0.32 

B6E001 68 2009 0.30 3.61 2012 0.40 3.50 2009 0.57 1.61 0.14 

B5E004 52 2005 0.64 1.90 1994 0.81 3.20 1994 0.74 1.85 0.37 

B1E003 44 2000 0.84 0.96 2000 1.00 2.59 2000 0.93 2.16 0.65 

 

Table 4. Variability analysis results for the annual temperature 

 
 

Station 

Pettitt SHNT Buishand von Neumann 

K t p-value T0 t p-value Q t p-value N 
p- 

value 

M
ax

im
u

m
 

T
em

p
er

at
u

re
 

X1E003 86 1997 0.12 3.90 2000 0.38 5.23 2000 0.14 1.87 0.42 

B2E001 82 1997 0.19 4.32 2000 0.44 5.50 2000 0.15 1.70 0.24 

B4E003 78 2000 0.15 4.03 2000 0.38 5.31 2000 0.13 1.46 0.07 

A2E013 88 2000 0.08 3.91 2000 0.37 5.23 2000 0.11 5.34 0.43 

B6E001 80 1997 0.22 3.49 2000 0.51 4.94 2000 0.24 1.91 0.45 

B5E004 74 1997 0.37 2.95 2000 0.67 4.54 2000 0.33 1.98 0.51 

B1E003 80 2000 0.13 2.96 2000 0.67 4.55 2000 0.32 5.17 0.59 

M
in

im
u

m
 

T
em

p
er

at
u

re
 

X1E003 90 1997 0.12 6.51 1997 0.21 6.52 1997 0.03 1.48 0.09 

B2E001 84 1997 0.11 5.47 2002 0.28 6.15 2002 0.09 1.50 0.06 

B4E003 106 1997 0.02 6.85 1997 0.13 6.69 1997 0.07 1.35 0.09 

A2E013 76 1997 0.14 4.75 2002 0.31 5.74 2002 0.06 1.72 0.29 

B6E001 118 1997 0.01 7.97 1997 0.02 7.22 1997 0.02 1.55 0.13 

B5E004 98 1997 0.04 6.60 1997 0.12 6.57 1997 0.05 1.57 0.14 

B1E003 108 1997 0.03 7.28 1997 0.14 6.90 1997 0.01 1.48 0.07 
Note: An italicized p-value < 0.05 means the dataset is not homogeneous.

 

3.3. Trend analysis 

In most of the stations in the Olifants River, 

annual rainfall exhibited increasing trends, except 

for B2E001 and B1E003 stations (Figure 2). 

Furthermore, the B2E001 station depicted a 

slightly decreasing trend based on Mann-Kendall 

(two-tailed test) and Sen's slope values (Table 5). 

Meanwhile, the B1E003 station’s trend analysis 

showed no trend for both methods (Table 5). 

Furthermore, based on the statistics, the A2E013 

station trend analysis results surpassed all 

stations. In the study area, the rainfall pattern has 

been increasing dramatically annually from 1979 

to 2013 in South Africa’s Limpopo River basin 

(Mosase & Ahiablame, 2018). Also, most Upper 

Karoo's rainfall stations show increasing trends 

from 1989 to 2018 (Harmse et al., 2021). 

Furthermore, there was no significantly 

increasing trend in South Africa’s Rietspruit sub-

basin (Banda et al., 2021). Using Sen’s slope test, 

the Limpopo River exhibited a rising rainfall 

trend except in Gwanda station (Nyikadzino et 

al., 2020). Additionally, rainfall variability 

considerably increased in most of the selected 

stations in Malawi, Mozambique, South Africa, 

and Zimbabwe (Mupangwa et al., 2021). Unlike 

the Southern Africa region, the rainfall pattern in 

the Horn of Africa showed a declining trend in 

most of the raingauge stations (Asfaw et al., 

2018; Belihu et al., 2018; Mulugeta et al., 2019; 

Adane et al., 2020; Aredo et al., 2021a; Gurara et 

al., 2022). The annual maximum temperature 

trend analysis slightly increased in the Upper-

Middle Olifants catchment (Table 6 and Figure 

3). However, the annual minimum temperature 

was slightly increasing at stations such as 

X1E003, B2E001, A2E013, and B5E004, while it 

was moderately increasing at B4E003, B6E001, 

and B1E003 (Table 6 and Figure 4). 
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Table 5. Trend analysis for the annual rainfall 

Station Number 
Trend test 

Kendall's tau S p-value Sen's slope 

X1E003 0.13 47 0.34 3.92 

B2E001 -0.03 -11 0.84 -1.95 

B4E003 0.09 31 0.54 2.43 

A2E013 0.15 53 0.28 4.89 

B6E001 0.08 29 0.56 2.24 

B5E004 0.08 27 0.59 1.14 

B1E003 0.00 -1.0 1.00 -0.07 

 

Table 6. Trend analysis for the annual temperature 

Station 

Number 

Maximum Temperature Minimum Temperature 

Kendall's tau S p-value 
Sen's 

slope 

Kendall's 

tau 
S p-value 

Sen's 

slope 

X1E003 0.14 49 0.32 0.024 0.15 53 0.28 0.010 

B2E001 0.15 51 0.3 0.025 0.15 51 0.3 0.011 

B4E003 0.10 35 0.48 0.016 0.21 73 0.13 0.014 

A2E013 0.12 43 0.39 0.018 0.13 45 0.36 0.010 

B6E001 0.15 51 0.3 0.019 0.24 85 0.08 0.014 

B5E004 0.08 29 0.56 0.009 0.17 61 0.21 0.011 

B1E003 0.13 45 0.36 0.017 0.2 69 0.16 0.011 

 

Increasing annual maximum and minimum 

temperatures have been increasing following the 

global climate change pattern and have been 

noticed in most African and the global south 

countries. For instance, in the Asian region, the 

trend analysis outcomes showed upward and 

downward trends for maximum and minimum 

temperature, respectively (Ali et al., 2019; Singh 

et al., 2020). The mean temperature in Africa’s 

Lake Chad showed a considerably rising trend in 

historical datasets (Mahmood & Jia, 2019). 

Similarly, the annual maximum and minimum 

temperatures were observed in the Limpopo 

River Basin, resulting in an increasing trend 

during the study periods (Mosase & Ahiablame, 

2018). Also, the findings of Kruger & Shongwe 

(2004) depict an increasing temperature trend in 

South Africa’s numerous study areas. 

Furthermore, the future rainfall pattern showed 

significant variability and may pose a drought 

vulnerability in South Africa’s Eastern Cape 

(Mahlalela et al., 2020). Comparable climate 

trend analysis observed in South Africa’s 

Limpopo River Basin (Gebre & Getahun, 2016; 

Maluleke et al., 2024). 

Furthermore, the climate variability and trend 

analysis study showed high unpredictability and 

vulnerability to food insecurity in South Africa’s 

Limpopo province (Shikwambana et al., 2021). 

There was a call for measures to mitigate South 

Africa's temperature and rainfall variability 

(Nsubuga et al., 2019). This study also 

emphasized the need for intervention to mitigate 

the ramifications of climate variability, which is 

consistent with the findings and previous studies 

conducted in South Africa. Moreover, the 

findings of this study will provide insight into the 

understanding of the Olifants River's historical 

climatic variability and trends in South Africa. 

Sustainable and innovative climate effects 

mitigation methods must be initiated to lessen the 

ramifications on agricultural productivity and 

environmental changes. Furthermore, boosting 

afforestation and water conservation activities to 

mitigate future climate effects will be imperative 

for the study area. Additionally, future studies 

could potentially explore the impact of natural 

and human activities on hydrology using 

physically based distributed models and 

considering coping strategies for likely 

hydrological extremes and water resources 

availability.
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Figure 2. Mann-Kendall (two-tailed test) trend analysis for annual rainfall (mm): (a) X1E003, (b) B2E001, (c) 

B4E003, (d) A2E013, (e) B6E001, (f) B5E004, and (g) B1E003 

 
Figure 3. Mann-Kendall (two-tailed test) trend analysis for annual maximum temperature (C): (a) X1E003, 

(b) B2E001, (c) B4E003, (d) A2E013, (e) B6E001, (f) B5E004, and (g) B1E003 
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Figure 4. Mann- Mann-Kendall (two-tailed test) trend analysis for annual minimum temperature (C): (a) 

X1E003, (b) B2E001, (c) B4E003, (d) A2E013, (e) B6E001, (f) B5E004, and (g) B1E003

 

4. Conclusions 

The study examined the change point detection, 

trend, and variability analysis of temperature and 

rainfall time series datasets in the Olifants River 

(South Africa) using numerous statistical analysis 

methods from 1988 to 2014. The annual rainfall 

variability analysis showed that a few stations 

were negatively skewed; most stations were in 

moderate variations and not normally distributed. 

However, the annual temperature analysis depicts 

slightly deviated and varied results, while most 

stations were negatively skewed. Surprisingly, all 

stations' annual rainfall and maximum 

temperature datasets were homogeneous. 

Furthermore, most tests and stations' minimum 

temperature data reflect inhomogeneity in 1997 

and 2002. The annual rainfall analysis has 

resulted in a rising trend, except for B2E001 

(slightly dropping trend) and B1E003 (no trend) 

stations. 

Additionally, the annual rainfall trend analysis 

showed disparities, while maximum and 

minimum temperatures showed an increasing 

trend with varying magnitudes. This study area is 

novel by enhancing the limited understanding of 

detection, climate variability, and trend analysis 

in the Olifants River basin. The outcome of this 

study will contribute to understanding water 

resources development and effective 

management. Moreover, this study is limited to 

study periods, and future studies can include 

incorporating future climate change impact on 

water resources using physically-based 

distributed hydrological models in the Olifants 

River, South Africa. The stakeholders can boost 

the availability of water resources by 

implementing water conservation initiatives in 

the study area. 
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