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Abstract 

Quantifying water resources is essential for developing evidence-based management strategies. 

Hydrological models play a great role in estimating streamflow, particularly in regions with 

limited flow measurement infrastructure. This study evaluates the integration of the GR4J 

conceptual hydrological model with Machine Learning (ML) techniques, Random Forest (RF), 

Extreme Learning Machine (ELM), eXtreme Gradient Boosting (XGB), and Long Short-Term 

Memory (LSTM) networks to improve daily streamflow prediction in the Bilate River 

watershed. Though GR4J captures general hydrological trends, its limitations in modeling 

nonlinear dynamics and extreme flows necessitate advanced approaches by augmenting GR4J’s 

simulated outputs with climate input features to train the ML models. The integrated models 

GR4J-RF, GR4J-ELM, GR4J-XGB, and GR4J-LSTM combine GR4J’s physical 

interpretability with ML’s capability to capture complex and nonlinear relationships, addressing 

the shortcomings of both the conceptual and ML methods. Findings of the study demonstrate 

significant improvements over standalone GR4J, with GR4J-LSTM and GR4J-XGB achieving 

the highest test performance (NSE of 0.77, KGE of up to 0.86), GR4J-RF excelling in training 

fit (train NSE of 0.87) with gaps in generalization, and GR4J-ELM offering computational 

efficiency with comparable performance (test NSE of 0.74). These findings highlight the 

potential of integrated modeling to improve streamflow prediction in data-limited regions, 

supporting applications such as flood prediction and drought monitoring. 
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1. Introduction 

The design, operation, and management of 

hydraulic structures such as dams and 

appurtenant structures, diversion headworks, and 

bridges heavily rely on accurately measured or 

correctly estimated streamflow data. Therefore, 

quantifying streamflow is critical, particularly in 

data-scarce regions, where hydrological models 

serve as essential tools for streamflow estimation 

(Ma et al., 2018; Sezen et al., 2019; Adane et al., 

2021; Bargam et al., 2024). These models are 

broadly categorized into process-based 

hydrological models (PBHMs) and data-driven 

approaches, each with distinct strengths and 

limitations. PBHMs, which simulate 

hydrological processes through mathematical 

representations (Dessie et al., 2014; Al-Mukhtar 

& Al-Yaseen, 2019), face challenges related to 

structural uncertainties, parameter calibration, 

and computational demands (Clark et al., 2017; 

S. Liu et al., 2022). Although lumped models like 

GR4J simplify spatial variability (Shi et al., 

2011), distributed models such as SWAT require 

extensive datasets (Zamani et al., 2021; Janjić & 

Tadić, 2023), limiting their applicability in data-

poor regions. On the other hand, machine 

learning (ML) and deep learning (DL) models 

excel at capturing complex, nonlinear 

relationships (Li et al., 2022) but often lack 

interpretability and are prone to overfitting when 

training data is limited (Shen et al., 2018; Kapoor 

et al., 2023). 

To overcome these limitations, recent research 

has explored hybrid modeling, integrating 

PBHMs with ML techniques to leverage their 

complementary strengths (Humphrey et al., 2016; 

Kumanlioglu & Fistikoglu, 2019). Various 

integration strategies have been proposed, 

including model output fusion (Zhang et al., 

2020), physics-guided ML where physical 

constraints are embedded into loss functions 

(Khandelwal et al., 2020), and feature 

augmentation using PBHM-simulated variables 

as additional ML inputs (He et al., 2021). For 

instance, Humphrey et al. (2016) demonstrated 

improved monthly flow predictions by coupling a 

conceptual model with ANN, while He et al. 

(2021) showed enhanced daily streamflow 

simulation through GR4J-LSTM integration. 

However, most existing work has focused on 

LSTM-based integrations (Kwak et al.,  2022; 

Mei et al., 2024), leaving other ML methods such 

as random forests (RF), extreme learning 

machines (ELM), and XGBoost (XGB) relatively 

unexplored. Additionally, few studies rigorously 

compare hybrid models against standalone ML 

approaches (Hao & Bai, 2023) to determine 

whether performance gains stem from integration 

or simply from the use of ML. 

In the Abaya-Chamo Lake basin of Ethiopia, 

where the studied watershed is found, previous 

hydrological studies have predominantly relied 

on PBHMs such as SWAT (Ayalew et al., 2023; 

Mada & Nannawo, 2023; Beza et al., 2024; 

Darota et al., 2024), HEC-HMS (Ibrahim et al., 

2024), and MIKE11-NAM (Nannawo et al., 

2022), often at coarse temporal resolutions due to 

concerns about input data variability. This study 

seeks to address these gaps by evaluating 

multiple integrated modeling approaches (GR4J 

combined with RF, ELM, XGB, and LSTM) 

through feature augmentation of GR4J simulated 

outputs (simulated flow and state variables) as 

input variables to the ML techniques. By 

systematically assessing different integration 

strategies in a data-scarce watershed, Bilate, this 

research contributes to the broader hydrological 

literature by: 1) identifying optimal integration 

configurations other than the commonly used 

LSTM approach; 2) clarifying whether GR4J 

simulated output-augmented integrations 

enhance predictive skill than the standalone base 

model; and 3) providing a transferable framework 

for improving streamflow predictions in 

understudied watersheds of the basin. 

 

2. Materials and Methods 

2.1. Study Area Description  

This study focused on the Abaya-Chamo Lake 

basin, specifically examining the Bilate River 

watershed, one of the major tributaries of Lake 

Abaya. The study area encompasses the Bilate 

River watershed upstream of the hydrological 

station near Alaba Kulito town, covering 

approximately 2,008 km². Geographically, the 

watershed extends between 7°16'6''N to 8°6'45''N 

latitude and 37°46'32''E to 38°14'55''E longitude 

(see Figure 1). 
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Figure 1. Geographical location of the study area 

 

2.2. Data and data sources  

This study utilized multiple datasets to 

characterize the hydro-climatic settings of the 

Bilate River watershed from 1985 to 2015. 

Primary meteorological data, including daily 

precipitation and minimum/maximum 

temperature records, were obtained from the 

Ethiopian Meteorological Institute (EMI). 

Corresponding daily streamflow measurements 

were collected from the Ministry of Water and 

Energy (MoWE) of Ethiopia for the station near 

Alaba Kulito town. To address missing values in 

precipitation and temperature, we used the 

Enhancing National Climate Services (ENACTS) 

gridded dataset. This dataset has employed an 

advanced blending algorithm to combine ground 

measurements with satellite estimates and has 

demonstrated strong agreement with observed 

station data (Dinku et al., 2018). Recently,  

Woldemariam et al. (2025)  further validated 

ENACTS’s applicability for hydrological studies 

in the Rift Valley basin of Ethiopia. Table 1 

presents detailed specifications of all datasets 

used in this research.
 

Table 1. Hydro-meteorological datasets used in this study 

Dataset Description Spatial 

Resolution 

Temporal 

Resolution 

Source Time span 

Precipitation 
Station based  -- 

daily 

 

EMA 

1985 - 2015 

ENATS da 4 km 1985 - 2015 

Temperature 
Station based  -- 1985 - 2015 

ENATS data  4 km 1985 - 2015 

Streamflow Station -- MoWE 1985 - 2015 

2.3. Methodology  

This study is aimed at integrating the GR4J 

conceptual hydrological model with RF, ELM, 

XGB, and LSTM ML networks to simulate daily 

streamflow in the Bilate River watershed, with 

particular focus on a hydrological station near 
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Alaba Kulito town. The methodology utilized 

GR4J simulated outputs, including simulated 

flow and state variables (production store and 

routing store) as hydrologically significant 

features, augmented with climate datasets to train 

the ML models. These integrated approaches 

leverage both hydrological processes 

understanding of the conceptual model and data-

driven learning capabilities of ML models. The 

complete methodological workflow implemented 

in this study is demonstrated in Figure 2. 

 
Figure 2. Conceptual framework for integration of the GR4J conceptual model with ML model 

 

2.3.1. Data preparation   

The station-based precipitation and temperature 

records had missing values, which were filled 

using the 4 km resolution gridded ENACTS 

weather dataset. Similarly, missing timestamps in 

the streamflow data were imputed using Random 

Forest regression, a robust machine learning 

approach for hydrological data imputation and 

rectification (Hamzah et al., 2021). 

Then, as PET is a critical input for the GR4J 

model, it was computed using Enku’s 

temperature method (Enku & Melesse, 2013), an 

empirical approach validated for Ethiopia. This 

method provides reliable PET estimates while 

requiring only temperature data, making it 

suitable for data-scarce regions. 

𝑃𝐸𝑇 =
(𝑇𝑚𝑎𝑥)𝑛

𝑘
 

(1) 

Where PET is the potential evapotranspiration 

(mm/day); Tmax is the daily maximum 

temperature in oC; n = 2.5; k = 48*Tmm – 330 for 

combined wet and dry conditions, where Tmm is 

the long-term daily mean maximum temperature 

in oC.  

Moreover, the streamflow records at the target 

station also exhibited statistical inconsistencies. 

Adjustments were done using empirical 

cumulative distribution function (CDF) matching 

and quantile mapping techniques (Nguyen et al., 

2024) to secure temporal consistency, an 

imperative step for reliable hydrological 

modeling. Additionally, the streamflow data had 

high-frequency noise that distorted hydrological 

patterns and compromised model performance. 

The application of low-level wavelet 

transformation reduced this noise while 

maintaining critical hydrological signals in the 

time series. Then, datasets were converted to 

NumPy arrays to meet the input requirements for 

both the GR4J hydrological and the ML models. 

 

2.3.2. Conceptual hydrological model (GR4J)   

The GR4J (Génie Rural à 4 parameters 

Journalize) was selected for this study as a 

parsimonious yet robust conceptual hydrological 
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 model (Anshuman et al., 2021). As demonstrated 

by Perrin et al. (2003), this four-parameter model 

effectively simulates daily streamflow using only 

precipitation and potential evapotranspiration 

inputs, making it particularly suitable for data-

scarce regions. Its structure captures key 

hydrological processes through four calibrated 

parameters: X1 represents the maximum capacity 

of the production store (mm), X2 governs 

groundwater exchange, X3 determines the routing 

store capacity (mm), and X4 controls the unit 

hydrograph time (days) (Anshuman et al., 2021; 

Asgari et al., 2025). To further improve model 

performance, an additional calibration parameter, 

scale factor (Sf), was incorporated, intending to 

mitigate measurement errors and model structural 

limitations.    

This model was implemented in Python utilizing 

the Digital Earth Africa Sandbox and its 

computational resources (dual-core processor, 

16GB RAM) (Digital Earth Africa, 2025). The 

model architecture was designed to process daily 

climatic inputs, specifically precipitation (P) and 

potential evapotranspiration (PET) time series. 

The simulation function was developed to 

process daily inputs of precipitation (P) and 

potential evapotranspiration (PET) over n time 

steps. For each time step t, a stepwise and 

simplified algorithm was implemented to 

successfully run the GR4J model. The stepwise 

algorithm employed is presented as follows. 

i. Production store update 

Production store update with precipitation:  

St = {
St−1 + Pt  if Pt > 0

St−1  if Pt ≤ 0
,           St = min (St, x1) (2) 

Effect of Evapotranspiration: 

St = St − Et ,    St = max(St, 0) (3) 

ii. Calculation of percolation 

Percolation is the water infiltrated from the 

production store to the routing store (Perrin et 

al., 2003). 

Water transfer from S to R was calculated using 

a nonlinear function: 

Perct = [√St ∗ (1 − max (0, 1

−
St

x1 + ϵ
))

1
1+max(x2,10−8)

)]

1.2

 

(4) 

Where 𝑆𝑡 = 𝑆𝑡 − Perc𝑡; 𝑅𝑡 = 𝑅𝑡−1 + Perc𝑡 and 

ϵ = very small number for numerical stability 

iii. Runoff Generation:  

Direct runoff (Qdt) is computed from the routing 

store using a nonlinear runoff-generating 

equation. 

Qdt = [Rt ∗ (1 − exp (−
1

x3
))]

1.2

 
(5) 

To ensure non-negative routing storage: 

 Rt = max(Rt − Qdt, 0) (6) 

Total simulated flow was scaled by applying a 

scale factor (Sf) 

Qt = Qdt ⋅ Sf (7) 

Then the above algorithm returns time series 

GR4J simulated flow and corresponding values 

of the two state variables, production store and 

routing store (Dambré et al., 2024). 

The optimal parameter values for the GR4J 

model were determined through automated 

calibration utilizing the Differential Evolution 

(DE) algorithm. The optimization process 

employed KGE as the objective function, which 

evaluates model performance by simultaneously 

considering correlation, variability, and biases. 

 

2.3.3. Long Short-Term Memory (LSTM)   

In this study, LSTM with residual connection was 

used for its performance in capturing sequential 

features characteristics to predict streamflow (Le 

et al., 2021). LSTM architecture is a special type 

of Recurrent Neural Network (RNN) which is 

capable of learning long-term dependencies in 

sequence prediction problems (Wegayehu & 

Muluneh, 2022). The Architecture of an LSTM 

network built around memory cells whose 

information is manipulated by three gates: an 

input gate, a forget gate, and an output gate (Gers 

& Cummins, 2000).  

The input layer accepts sequences of shape [L, F], 

where L is the sequence length and F is the 

number of features at each time step t. This 

sliding window approach is common in 

hydrological time series forecasting (Xiang et al., 

2020; Le et al., 2021). For a given time step t, the 

input vector is: 

xt = [F1,t, F2,t, F3t, … , FF,t] ∈ ℝF,

t = 1,2, … , L 

(8) 
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The input sequence for a sample at time t can be 

expressed as:  
Xt = [xt−L+1, xt−L+2, … , xt] ∈ ℝL⨉F  (9) 

Each LSTM layer processed the input sequence 

using a recurrent structure with memory cells, 

governed by forget, input, and output gates.  

Forget gate: information that is no longer useful 

in the cell state is rejected by the forget gate (Gers 

& Cummins, 2000). It takes Xt (input at time t) 

and ht-1 (previous cell output), and multiplies 

weight followed by the addition of bias (Siami-

Namini et al., 2019). The result passes through an 

activation function, which gives a binary output, 

0 and 1. If the cell state output is 0, the 

information is forgotten, and if it is 1, the 

information is retained for future use (Greff et al., 

2017). 

ft = σ(Wf[ht−1, xt] + bf)  (10) 

Input gate: The addition of information to the 

cell state is done by the input gate.  The 

information is first gated by a sigmoid function, 

which uses the inputs ht-1 and Xt to filter and 

decide which values to remember. The tanh 

function is then applied to generate a vector with 

values ranging from -1 to +1 that contains all of 

the possible values from h t-1 and x t. Finally, the 

vector and regulated values are multiplied to 

obtain useful information. This two-step process 

creates a candidate value that is added to the state 

(Graves et al., 2013). 

it = σ(Wi[ht−1, xt] + bi)      (11) 

C̃̃t = tanh(Wc. [ht−1, xt] + bc)     (12) 

Ct = (ft. Ct−1 + it. C̃̃̃̃ t)   (13) 

Output gate: The output gate is in charge of 

extracting useful information from the current 

cell state and presenting it as output (Kratzert et 

al., 2018). To begin, a vector is created by 

applying the tanh function to the cell. The 

information is then regulated using the sigmoid 

function and filtered by the values to be 

remembered via ht-1 and Xt inputs. Finally, the 

vector and regulated values are multiplied and 

sent as output and input to the next cell (Greff et 

al., 2017).  

Ot = σ(Wo[ht−1, xt] + bo)    (14) 
ht = Ot ∗ tanh(Ct) (15) 

Where Wf, Wi, Wc, Wo: weight metrics for forget, 

input, candidate, and output gate; bf, bi, bc, bo: 

bias vectors;  tanh: activation function, σ: 

sigmoid activation function; Xt: input at time t, ht-

1: previous cell output, ft: information retained at 

forget gate, it: regulated information at input gate, 

C̃t: vector ranging -1 to 1, Ct: useful information 

at input gate, Ot: output, ht: input to the next cell. 

 

2.3.4. Random Forest (RF) 

RF is an ensemble machine learning algorithm 

that builds multiple decision trees during training 

and combines their predictions, typically 

averaging them for regression tasks (Breiman, 

2001). Its ability to capture nonlinear 

relationships and manage multi-dimensional 

datasets makes it a prevalent choice for 

hydrological modeling (Tyralis & 

Papacharalampous, 2019). By introducing 

randomness through bootstrapped training 

samples and random feature selection at each tree 

split, RF improves model generalization and 

robustness (Cutler et al., 2012). Compared to 

deep learning models, RF requires minimal 

hyperparameter tuning, offering computational 

efficiency that is particularly valuable for 

hydrological applications. 

Recent studies highlight RF’s effectiveness in 

streamflow forecasting. For instance, Li et al. 

(2019) demonstrated its strong performance in 

predicting daily streamflow, while Zhang & 

Thorburn (2022) noted its resilience to missing 

data and noise, common challenges in 

hydrological datasets. These qualities make RF 

well-suited for modeling complex hydrological 

systems. 

In basins with limited data, such as the Bilate 

watershed, RF offers a powerful, data-driven 

solution for streamflow prediction. Its ability to 

integrate diverse environmental data sources 

enhances its utility in water resource 

management, making it an essential tool for 

researchers. 

2.3.5. Extreme Learning Machine (ELM) 

ELM is a single-hidden-layer feedforward neural 

network popular for its fast training and robust 

generalization (Huang et al., 2006). Unlike 

conventional neural networks that rely on 

iterative backpropagation, ELM randomly 

initializes the weights and biases of its input layer 

and analytically computes the output layer 

weights using least-squares optimization (Huang 

et al., 2011). This approach significantly reduces 

computational demands while preserving high 
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 predictive accuracy, making ELM effective for 

hydrological modeling, where nonlinear 

relationships are dominant (Yaseen et al., 2016). 

Its ability to model nonlinear functions without 

extensive parameter tuning makes it well-suited 

for real-time forecasting in regions with limited 

data (Adnan et al., 2019). ELM has comparable 

performance with deep learning models like 

LSTM networks, in situations with limited 

training data (Tao et al., 2022).  

 

2.3.6. Extreme Gradient Boosting (XGB) 

XGB, an ensemble machine learning method, is 

excellent in regression and classification by an 

optimized gradient boosting framework. It uses 

regularization to mitigate overfitting and captures 

nonlinear relationships, making it suitable for 

hydrological modeling. By iteratively 

constructing decision trees that correct errors 

from prior iterations, XGB achieves fast training 

and scalability for large datasets (Chen & 

Guestrin, 2016). 

Recent studies demonstrate that XGB often 

surpasses conventional models like Random 

Forest and Artificial Neural Networks in both 

accuracy and computational efficiency, especially 

for high temporal resolution predictions (Hao & 

Bai, 2023).  

 

2.3.7. Integration of GR4J with LSTM, RF, 

ELM, and XGB  

This study proposed an integrated modeling 

framework that augments simulation outputs of 

the GR4J model to train ML models, LSTM, RF, 

ELM, and XGB. The primary objective is to 

enhance streamflow prediction by combining 

GR4J simulated outputs, including streamflow 

and state variables (production store, PS, and 

routing store, RS), with climate data 

(precipitation, P, potential evapotranspiration, 

PET, and net precipitation) and their derived 

features. The input features used in this study can 

be categorized into three. 1) Hydrological 

features: representing watershed response 

dynamics (GR4J-simulated streamflow, PS, RS). 

2) Climate features: External drivers of 

hydrological processes (P, PET, P_net). 3) 

Temporal features: Capturing seasonal patterns 

(sine-transformed day of the year). 

To ensure the selection of the most relevant input 

features for the models, a series of preprocessing 

steps was employed. Initially, temporal lags 

ranging from 1 to 10 days were incorporated to 

capture the influence of antecedent conditions on 

streamflow, accounting for the delayed effects of 

meteorological inputs. Next, seasonality was 

encoded using a sine transformation of the day-

of-year to effectively represent annual recurring 

patterns in the dataset and enhance the models’ 

ability to capture seasonal patterns. Then, rolling 

statistics were computed with moving average 

windows of 3, 5, and 7 days to smooth short-term 

variability while preserving meaningful signals in 

the time series. This step reduced noise in the 

data, making the models focus on significant 

signals. Finally, feature selection was performed 

using Pearson’s correlation to identify the most 

important and non-redundant features. Features 

with an absolute correlation coefficient (|r|) 

greater than 0.4 with the target were retained. To 

mitigate multicollinearity, features exhibiting an 

absolute feature-to-feature correlation greater 

than 0.8 were assessed, and the feature with the 

lower target correlation was removed, thus 

keeping a balanced and effective features for the 

models. 

 

2.3.7.1. Data Splitting and Normalization 

A two-way data split was applied in this study to 

segment the data into training and testing sets to 

train and evaluate the ML models. A temporal 

split method was applied to maintain 

chronological order, ensuring the training period 

preceded the testing period. Training from 1985 

to 2008, used for model training, and testing from 

2009 to 2015 for performance assessment. 

Splitting of the data was conducted before 

applying any feature engineering tasks, such as 

rolling means, to prevent data leakage between 

training and testing datasets. 

To ensure ML’s training stability and better 

results, all variables, both in training and testing 

datasets, were normalized. The Min-Max scaler 

was applied to scale the features and the target to 
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the range 0 to 1 (Liu et al.,  2020). MinMaxScaler 

uses this formula. 

Xscaled =
Xt   −  Xmin  

Xmax −  Xmin  

 
(16) 

Where Xscaled: normalized value at time t; Xt: 

Value before normalization at time t; Xmax: the 

maximum value within the time series; Xmin: The 

minimum value within the time series. 

2.3.8. Hyperparameter tuning   

Hyperparameters are predefined parameters that 

cannot be learned during model training, yet they 

significantly influence an ML model’s 

performance. Properly optimized 

hyperparameters boost model accuracy and 

optimize training efficiency.  

For LSTM models, essential hyperparameters 

include the number of LSTM layers, units per 

layer, activation function, dropout rates, 

regularization parameters, learning rate, batch 

size, and the number of epochs (Bartz-beielstein 

& Zaefferer, 2023). 

Hyperparameter tuning for the LSTM model was 

performed using Keras Tuner, an open-source 

optimization tool integrated with Python 3.8 and 

TensorFlow/Keras. The model was compiled 

using the Adam optimizer and mean squared error 

(MSE) loss function (Wegayehu & Muluneh, 

2021, 2022). The tuning process encompassed 75 

trials, with each trial running for a maximum of 

50 epochs and incorporating EarlyStopping with 

a patience of 10 epochs to mitigate overfitting. 

Following the initial tuning, additional trial-and-

error adjustments were made to refine the 

hyperparameters further. Key LSTM 

hyperparameters, such as sequence length and the 

number of epochs, were determined through 

iterative experimentation to identify optimal 

values for the model. The optimization process 

was done on the Digital Earth Africa Sandbox 

Computing platform, equipped with a dual-core 

processor and 16 GB of RAM, providing 

computational resources for the tuning task. 

Hyperparameters for RF, ELM, and XGB were 

tuned using the Grid Search method, which 

exhaustively evaluates predefined 

hyperparameter combinations through cross-

validation. For detailed information on the 

hyperparameters and optimal values, see Table 2. 

Table 2. Optimal hyperparameters for FR, ELM, XGB, and LSTM 

Hyperparameters for RF 

Hyperparameter Optimal Values Description 

n_estimators 200 Number of trees 

max_depth 10 Maximum depth of trees 

min_samples_split 2 Minimum samples to split a node 

min_samples_leaf 10 minimum samples at a leaf node 

Hyperparameters for ELM 

n_hidden 20 Number of hidden neurons 

activation sigmoid Activation function 

Hyperparameters for XGB 

n_estimators 100 Number of boosting rounds 

max_depth 3 Maximum depth of trees 

learning_rate 0.05 Step size shrinkage 

subsample 0.8 Fraction of sample per tree 

colsample_bytree 0.6 Fraction of features per tree 

Hyperparameters for LSTM 

num_layers 3 Number of LSTM layers 

units_1 128 Number of units in the first layer. 

units_2 64 Number of units in the second layer 

units_3 32 Number of units in the third  layer 

dropout_rate_1 0.5 Dropout rate for the first  layer  

dropout_rate_2 0.4 Dropout rate for the second layer 

dropout_rate_3 0.4 Dropout rate for the third layer 

l1_reg 8.00E-06 L1 regularization to penalize large weights. 

l2_reg 8.30E-06 L2 regularization to penalize large weights. 

learning_rate 0.0001 Learning rate for the Adam optimizer 
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 batch_size 16 Number of samples per gradient update 

Sequence_length 15 Number of time steps in the LSTM input sequence 

Epochs 100 Number of training iterations 

2.3.9. Model Performance Evaluation Metrics  

Hydrological model performance is usually 

assessed using multiple metrics, each offering 

unique understandings into different aspects of 

model accuracy (Moriasi et al., 2007). In this 

study, we employed five widely recognized 

evaluation metrics in hydrology, namely, NSE, 

R², RMSE, MAE, and KGE. These metrics are 

calculated as follows (Nash & Sutcliffe, 1970; 

Duc & Sawada, 2023): 

NSE = 1 −
∑(Q0bs − Qsim)2

∑(Q0bs − Q̅0bs)2
 

(17) 

R2 =
(∑(Qobs − Q̅obs)(Qsim − Q̅sim))2

Σ(Q0 − Q̅0)2(Qsim − Q̅sim)2
 

(18) 

KGE = 1 − √(r − 1)2 + (a − 1)2 + (β − 1)2 (19) 

RMSE = √
Σ(Q _sim −Q_obs)2

n
               

(20) 

MAE =
∑|Qsim − Q0bs|

n
                    

(21) 

Where Qobs and Qsim represent observed and 

simulated streamflow at time step i, and O̅obs and 

O̅sim  denote their respective means, n is the 

number of observations, and r, α, and β 

correspond to the correlation, variability ratio, 

and bias components of KGE

Figure 3.  Time series GR4J model input datasets 

 

3. Results and 

Discussion 

3.1. GR4J Conceptual Model  

After applying appropriate data processing steps, 

including handling missing values, adjusting data 

consistency, and correcting outliers, the time 

series input datasets for the GR4J model 

(precipitation P, potential evapotranspiration 

PET, and observed streamflow Qobs) are plotted 

and shown in Figure 3. The statistical 

characteristics of the data are summarized in 

Table 3. 

As shown in Table 3, Precipitation exhibits 

significant variability, as indicated by its large 

standard deviation, and is positively skewed, 

suggesting that while most days experience 

minimum rainfall values, there are occasional 

instances of heavy rainfall. In contrast, Potential 

Evapotranspiration (PET) remains relatively 

stable, showing small fluctuations and a nearly 

symmetric distribution. Streamflow, although 

more variable than PET, is less so compared to 

precipitation. It also follows a positive skew, 

indicating that streamflow values are generally 

low, with occasional high flow events. 
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Table 3.  Statistical characteristics of the GR4J’s input data 

Variables/Stat. min max mean Std. skewness kurtosis sample size 

Precipitation (mm) 0.00 23.53 2.99 4.34 1.80 3.16 11322 

PET (mm) 1.38 5.85 3.34 0.63 0.08 -0.32 11322 

Streamflow (mm) 0.00 1.75 0.48 0.51 1.14 0.07 11322 

3.2. GR4J Model Calibration 

The GR4J model parameters were calibrated 

using DE, applying the approach of 

Napiorkowski et al. (2023), with KGE serving as 

the objective function. This study optimized the 

four standard GR4J parameters (X1, X2, X3, and 

X4) along with an additional scale factor (Sf). The 

resulting calibrated parameter values (see Table 

4) were 939.42 mm for X1, -0.70 mm for X2, 1.00 

mm for X3, 2.73 days for X4, and 0.60 for Sf. 
 

Table 4. GR4J model calibration parameters and their corresponding values 

The GR4J model produced three outputs: daily 

simulated flow and two state variables, the 

production store and the routing store. To 

visualize the time series GR4J simulated outputs, 

see Figure 4.  

 
Figure 4.  a: Observed streamflow time series; b: GR4J simulated streamflow time series; c: Production store time 

series; d: Routing store time series 

Parameter Description Optimal value 

X1 Maximum capacity of the production store (mm) 939.42 

X2 Groundwater exchange coefficient (mm) -0.70 

X3 A day ahead, maximum capacity of the routing stores (mm) 1.00 

X4 The time base of the unit hydrograph (days) 2.73 

Sf Scale factor 0.60 
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 3.3. Feature Selection 

The dataset initially comprised 55 features, 

encompassing original climate variables, GR4J-

simulated outputs, and derived features from 

lagged values and rolling averages. However, not 

all features contribute equally to model training, 

and including irrelevant features can negatively 

affect training speed and predictive performance. 

Therefore, a feature selection process was 

executed based on Pearson’s correlation with the 

target and with features themselves. This 

approach resulted in the selection of eleven key 

features for training and testing the proposed 

models.  

Figure 5 presents the correlation values of the 

selected features with the target and among 

themselves, offering insights into their 

importance and inter-relationships. 

 
Figure 5. Heat-map showing correlation of selected features to the target, and feature to feature; it shows relatively 

strong correlation with the target and low correlation with each other 

 

The heat-map visualization confirms that the 

selected features exhibit strong relationships with 

the target variable while maintaining a low 

correlation with each other, effectively mitigating 

the issue of multicollinearity and offering insights 

into their importance and inter-relationships. 

3.4. Model's performance evaluation 

The GR4J model was calibrated using data from 

1985 to 2015. To facilitate a comparative analysis 

with the integrated models, the dataset was 

divided into training (1985–2008) and testing 

(2009–2015) periods. This consistent partitioning 

ensures fair performance evaluation across all 

five models. Although the terms ‘training’ and 

‘testing’ are not conventionally used for GR4J, 

they are adopted here to keep alignment with the 

integrated models.  

To achieve enhanced streamflow prediction 

capability, we integrated GR4J with advanced 

ML techniques. The results in Table 5 

demonstrate significant improvements in 

predictive performance across all integrated 

models compared to the standalone GR4J, with 

nuanced variations among the ML integrations.  
 

Table 5. Performance metrics and their corresponding values for all models during training and testing 
Model GR4J GR4J-RF GR4J-ELM GR4J-XGB GR4J-LSTM 

Datasets Train Test Train Test Train Test Train Test Train Test 

RMSE 0.302 0.347 0.107 0.153 0.151 0.148 0.140 0.141 0.149 0.138 

MAE 0.204 0.255 0.073 0.107 0.104 0.102 0.099 0.098 0.102 0.096 

NSE 0.65 0.53 0.87 0.72 0.73 0.74 0.77 0.76 0.74 0.77 
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KGE 0.80 0.69 0.87 0.82 0.79 0.83 0.80 0.83 0.79 0.86 

R2 0.70 0.70 0.87 0.73 0.73 0.75 0.77 0.77 0.74 0.79 

Below, the findings are analyzed in detail, 

discussing models’ strengths and weaknesses 

based on the metrics and hydrological 

implications. 
3.4.1. Performance based on RMSE and MAE 

As illustrated in Table 5, RMSE and MAE 

provide complementary insights into model 

accuracy, with RMSE emphasizing larger 

deviations and MAE offering a balanced measure 

of average prediction consistency without 

overweighting outliers. The standalone GR4J 

model exhibited a training RMSE of 0.302 mm, 

increasing to 0.347 mm during testing, while 

MAE rose from 0.204 mm to 0.255 mm. In 

contrast, in all integrated models (GR4J-RF, 

GR4J-ELM, GR4J-XGB, and GR4J-LSTM), 

substantial improvements were achieved.   

During training, GR4J-RF achieved the lowest 

errors (RMSE = 0.107 mm; MAE = 0.073 mm), 

leveraging its ensemble tree structure to 

effectively model nonlinear hydro-

meteorological relationships. It was followed by 

GR4J-XGB (with RMSE of 0.140 mm, and MAE 

of 0.099 mm), GR4J-LSTM (with RMSE of 

0.149 mm, and MAE of 0.102 mm), and GR4J-

ELM (with RMSE = 0.151 mm, and MAE = 

0.104 mm). These results indicate the hybrid 

models’ superior ability to fit observed data. 

During testing, GR4J-LSTM outperformed other 

models (RMSE = 0.138 mm; MAE = 0.096 mm), 

likely due to its sequential learning capability, 

which effectively captures temporal 

dependencies in hydrological time series. GR4J-

XGB closely followed (RMSE = 0.141 mm; 

MAE = 0.098 mm), reflecting its gradient-

boosting precision, while GR4J-ELM (RMSE = 

0.148 mm; MAE = 0.102 mm) and GR4J-RF 

(RMSE = 0.153 mm; MAE = 0.107 mm) 

exhibited slightly higher errors. Although GR4J-

RF excelled in training, its minor generalization 

gap suggests potential overfitting compared to the 

GR4J-LSTM and GR4J-XGB. Collectively, the 

integrated models’ reduced RMSE and MAE 

values reflect their enhanced predictive accuracy 

over the standalone GR4J, with GR4J-LSTM 

emerging as the most effective for operational 

streamflow prediction. 

 

3.4.2. Performance based on NSE, KGE, and R2 

Based on the results shown in Table 5, further 

evaluation of model performance was done using 

the NSE, KGE, and R2, which assess variance 

explanation, bias-variability-correlation balance, 

and trend alignment, respectively. The standalone 

GR4J exhibited moderate performance, whereas 

all integrated models demonstrated significant 

improvements. 

GR4J achieved a training NSE of 0.65, 

explaining 65% of streamflow variance relative 

to a mean-flow baseline, but this declined to 0.53 

during testing. Its KGE (integrating correlation, 

variability, and bias) decreased from 0.80 

(training) to 0.69 (testing), while R2 remained 

stable at 0.70, indicating reliable but limited 

trend-tracking capability. These results suggest 

that GR4J captures basic hydrological patterns 

but struggles with complex, nonlinear dynamics. 

The hybrid models consistently outperformed 

GR4J. GR4J-RF achieved the highest training 

NSE (0.87), KGE (0.87), and R2 (0.87), 

benefiting from its ensemble tree-based nonlinear 

modeling. However, its testing performance 

declined (NSE = 0.72; KGE = 0.82; R2 = 0.73), 

indicating a slight generalization gap. 

GR4J-LSTM dominated in testing, achieving the 

highest NSE (0.77), KGE (0.86), and R2 (0.79), 

reflecting its superior generalization via 

sequential learning. During training, it achieved 

NSE of 0.74, KGE of 0.80, and R2 of 0.74. 

Similarly, GR4J-XGB matched GR4J-LSTM’s 

testing NSE (0.77) while achieving a KGE of 

0.83 and R2 of 0.77. GR4J-ELM also showed 

consistent improvements (training: NSE = 0.73, 

KGE = 0.79, R2 = 0.73; testing: NSE = 0.74, KGE 

= 0.83, R2 = 0.75), balancing efficiency and 

predictive capability. 

In general, the integrated models outperformed 

the GR4J model, with GR4J-LSTM and GR4J-

XGB leading in generalization (testing NSE = 

0.77, KGE up to 0.86, R2 up to 0.79), GR4J-RF 

excelling in training fit, and GR4J-ELM offering 

a computationally efficient alternative. These 

improvements accentuate the value of integrating 

ML with GR4J by augmenting simulated outputs 
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 to capture complex hydrological dynamics, with 

LSTM and XGB being particularly suited for 

high-accuracy applications. 

In addition to the performance metrics presented 

in Table 5, Figure 6 illustrates the time series plots 

of the observed and simulated streamflow of the 

standalone GR4J model, and its integration with 

the ML models. 

 
Figure 6. Time series observed and predicted streamflow during training and testing; a: for GR4J standalone model, 

b: for GR4J-RF integrated model, c: GR4J-ELM integrated model, d: for GR4J-XGB integrated model, and e: for 

GR4J-LSTM integrated model. 

3.5. Discussion 

The standalone GR4J model demonstrated 

moderate performance in streamflow prediction, 

effectively capturing general hydrological trends 

(Dambré et al., 2024). However, its limitations 

are apparent when addressing daily streamflow 

variability, particularly in highly dynamic 

watersheds like Bilate. With only four parameters 

and a simplified process representation, GR4J 

struggles to capture complex hydro-

meteorological dynamics, a constraint well-stated 

in previous studies (Perrin et al., 2003; Kunnath-

Poovakka & Eldho, 2019; Anshuman et al., 2021; 

Kodja et al., 2023). Figure 6a highlights these 

constraints, revealing systematic biases, 

overestimation of peak flows, and 

underestimation of low flows, consistent with 

findings by Kapoor et al. (2023) and Yang et al. 

(2024). These limitations emphasize the need for 

structural enhancements to improve predictive 
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performance, especially under extreme flow 

conditions. 

 

3.5.1. Advantages of GR4J-ML Models 

The integration of GR4J with ML methods, RF, 

ELM, XGB, and LSTM networks remarkably 

improved predictive accuracy across both 

training and testing phases. This enhancement 

arises from synergizing GR4J’s physical 

interpretability with ML’s ability to model 

nonlinear relationships and temporal 

dependencies (Tian et al., 2018; Sezen & Partal, 

2022; Mei et al., 2024). 

During training, all integrated models 

outperformed standalone GR4J, with GR4J-RF 

achieving the highest NSE (0.87) and KGE 

(0.87). However, while GR4J’s testing 

performance declined (NSE = 0.53; KGE = 0.69), 

the integrating models maintained high accuracy, 

particularly GR4J-LSTM (NSE = 0.77; KGE = 

0.86), demonstrating superior generalization 

across flow regimes. These results align with 

Konapala et al. (2020), who indicated ML’s 

capacity to balance correlation, variability, and 

bias, making integrated models ideal for data-

scarce regions like the Bilate watershed, where 

accurate water management is critical.  

Time series analyses (Figures 6b to 6e) and 

performance metrics (Table 5) further confirm the 

integrated models’ excellent alignment with 

observed streamflow data, even during extreme 

events. Although GR4J-LSTM slightly 

outperformed others, all integrated models 

addressed a key limitation of purely data-driven 

approaches: the lack of hydrological 

interpretability (Mohammadi, Safari, & 

Vazifehkhah, 2022). By training ML models with 

GR4J’s physically-based features, such as 

simulated runoff, the integrated models provide a 

hydrologically informed framework, particularly 

valuable in regions with limited observational 

data (Armstrong et al., 2025). This integration 

effectively bridges the gap between conceptual 

and data-driven modeling, enhancing both 

accuracy and operational applicability. 

Comparative Performance and Hydrological 

Implications 

The success of integrated modeling aligns with 

recent studies advocating such approaches 

(Mohammadi et al., 2022; Kapoor et al., 2023; 

Yang et al., 2024). These models retain GR4J’s 

physical interpretability while leveraging ML’s 

strengths in capturing complex patterns and 

nonlinear relationships (Hah et al., 2022; Liu et 

al., 2022). For instance, GR4J-LSTM’s ability to 

capture temporal dependencies (test NSE = 0.77, 

KGE = 0.86) verifies Mei et al. (2024), who 

demonstrated that coupling conceptual models 

with deep learning improves predictive 

performance by modeling temporal variability in 

streamflow. Similarly, Yang et al. (2024) 

emphasized the role of integrated frameworks in 

balancing physical practicality with data-driven 

adaptability to complex rainfall-runoff processes, 

achieving high accuracy in runoff predictions, 

particularly during extreme events, a finding 

reflected in the superior predictive performance 

of GR4J-LSTM and GR4J-XGB in this study. 

Further support comes from Mohammadi et al. 

(2022), who found that combining conceptual 

models with ML reduces errors and enhances 

generalization while mitigating the “black box” 

nature of pure ML techniques. Results of this 

study reinforce this, as GR4J’s simulated features 

provided a meaningful basis for ML algorithms, 

improving both accuracy and interpretability. 

 

3.5.2. Long-term mean daily streamflow 

evaluation 

The evaluation of long-term mean daily 

streamflow predictions (Figure 7) provides 

critical understanding into model performance 

across the complete hydrological spectrum. Our 

analysis reveals that the integrated models 

(GR4J-RF, GR4J-ELM, GR4J-XGB, and GR4J-

LSTM) demonstrate superior accuracy in 

capturing the full range of flow conditions 

compared to the standalone GR4J model. This 

enhanced performance is particularly evident in 

their ability to reproduce both seasonal flow 

patterns and extreme events, signifying these 

integrated approaches effectively combine 

physical process understanding with pattern 

recognition capabilities. 
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Figure 7. Long-term mean daily streamflow over days of the year 

 

The standalone GR4J model exhibits systematic 

biases that show significant structural limitations. 

Consistent overestimation of high-flow events 

suggests deficiencies in its representation of 

quickflow generation processes, while 

underestimation of low flows indicates 

inadequate parameterization of baseflow 

dynamics (Clark et al., 2017). These findings 

align with previous studies showing conceptual 

models often struggle to capture nonlinear 

rainfall-runoff relationships, particularly in 

watersheds with strong seasonality (Fowler et al., 

2020). The integrated models' ability to overcome 

these limitations supports recent arguments for 

combining physical and ML techniques in 

hydrological modeling (Shen et al., 2018). 

From a practical perspective, these performance 

differences have significant implications for 

water resources management. The integrated 

models' accurate prediction of peak flows could 

substantially enhance flood early warning, 

reducing risks for the downstream ecosystem 

(Emerton et al., 2018). Similarly, their better 

representation of low-flow conditions enhances 

drought monitoring capabilities, supporting water 

allocation during dry seasons (Loon et al., 2016).  

Our findings contribute to ongoing discussions 

about optimal modeling approaches in data-

scarce regions. Though some studies promote 

pure data-driven techniques, our results suggest 

integrated models provide significant advantages 

by maintaining physical interpretability while 

improving predictive accuracy (Nearing et al., 

2020). This balance is valuable for operational 

water management, where both performance and 

interpretability are needed. 

 

4. Conclusion 

This study demonstrates that integration of the 

GR4J conceptual model with ML techniques, RF, 

ELM, XGB, and LSTM significantly enhances 

streamflow prediction accuracy in the Bilate 

River watershed. The integrated models 

consistently outperformed the standalone GR4J 

across multiple performance metrics, effectively 

combining GR4J’s physical interpretability with 

ML’s ability to capture nonlinear relationships 

and temporal dependencies. This integration 

successfully addresses key limitations of GR4J, 

particularly in modeling high daily streamflow 

variability and extreme flow events (high and low 

flows). 

GR4J-LSTM and GR4J-XGB emerged as the 

most robust operational prediction, 

demonstrating superior generalization with test 

NSE values of up to 0.77 and KGE values 

reaching 0.86. These models effectively 

leveraged sequential learning (LSTM) and 

gradient-boosting precision (XGB) to improve 

temporal flow predictions. Meanwhile, GR4J-RF 

excelled in training performance (NSE = 0.87), 

though it exhibited a slight generalization gap 

during testing. GR4J-ELM provided a 

computationally efficient alternative, maintaining 
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comparative accuracy (test NSE = 0.74), making 

it a viable option for applications with limited 

computational resources. 

These improvements align with prior studies 

promoting integrated modeling to balance 

physical process interpretability with ML 

adaptability. The integrated models’ ability to 

preferably predict both low and peak flows 

supports critical water resource management 

applications in the Bilate River basin, such as 

flood and drought monitoring. Based on the 

findings, for achieving the highest predictive 

accuracy and robust generalization, particularly 

for capturing complex temporal patterns, GR4J-

LSTM is the recommended choice, assuming 

sufficient computational resources and data are 

available. For a powerful and often more 

computationally efficient alternative to LSTM 

that also provides excellent accuracy and feature 

importance insights, GR4J-XGB is a 

recommended option. For situations where 

computational resources are very limited and 

rapid model implementation is a priority, GR4J-

ELM offers a strong balance of acceptable 

accuracy and high computational efficiency. 

Though this study confirms the value of 

integrated models, several challenges and 

opportunities remain for future research. Future 

work should focus on optimizing the 

computational demands of integrated models like 

GR4J-LSTM. A critical future direction is the 

assimilation of additional data sources, such as 

satellite-derived soil moisture and precipitation 

products, as well as climate reanalysis data, to 

enhance model input and potentially improve 

predictions, especially in data-scarce regions. 
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