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Abstract

Quantifying water resources is essential for developing evidence-based management strategies.
Hydrological models play a great role in estimating streamflow, particularly in regions with
limited flow measurement infrastructure. This study evaluates the integration of the GR4J
conceptual hydrological model with Machine Learning (ML) techniques, Random Forest (RF),
Extreme Learning Machine (ELM), eXtreme Gradient Boosting (XGB), and Long Short-Term
Memory (LSTM) networks to improve daily streamflow prediction in the Bilate River
watershed. Though GR4J captures general hydrological trends, its limitations in modeling
nonlinear dynamics and extreme flows necessitate advanced approaches by augmenting GR4J’s
simulated outputs with climate input features to train the ML models. The integrated models
GR4J-RF, GRA4J-ELM, GR4J-XGB, and GR4J-LSTM combine GR4J’s physical
interpretability with ML’s capability to capture complex and nonlinear relationships, addressing
the shortcomings of both the conceptual and ML methods. Findings of the study demonstrate
significant improvements over standalone GR4J, with GR4J-LSTM and GR4J-XGB achieving
the highest test performance (NSE of 0.77, KGE of up to 0.86), GR4J-RF excelling in training
fit (train NSE of 0.87) with gaps in generalization, and GR4J-ELM offering computational
efficiency with comparable performance (test NSE of 0.74). These findings highlight the
potential of integrated modeling to improve streamflow prediction in data-limited regions,
supporting applications such as flood prediction and drought monitoring.
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1. Introduction

The design, operation, and management of
hydraulic structures such as dams and
appurtenant structures, diversion headworks, and
bridges heavily rely on accurately measured or
correctly estimated streamflow data. Therefore,
quantifying streamflow is critical, particularly in
data-scarce regions, where hydrological models
serve as essential tools for streamflow estimation
(Ma et al., 2018; Sezen et al., 2019; Adane et al.,
2021; Bargam et al., 2024). These models are
broadly  categorized into  process-based
hydrological models (PBHMs) and data-driven
approaches, each with distinct strengths and
limitations. PBHMs, which simulate
hydrological processes through mathematical
representations (Dessie et al., 2014; Al-Mukhtar
& Al-Yaseen, 2019), face challenges related to
structural uncertainties, parameter calibration,
and computational demands (Clark et al., 2017;
S. Liu et al., 2022). Although lumped models like
GRA4J simplify spatial variability (Shi et al.,
2011), distributed models such as SWAT require
extensive datasets (Zamani et al., 2021; Janji¢ &
Tadi¢, 2023), limiting their applicability in data-
poor regions. On the other hand, machine
learning (ML) and deep learning (DL) models
excel at capturing complex, nonlinear
relationships (Li et al.,, 2022) but often lack
interpretability and are prone to overfitting when
training data is limited (Shen et al., 2018; Kapoor
et al., 2023).

To overcome these limitations, recent research
has explored hybrid modeling, integrating
PBHMs with ML techniques to leverage their
complementary strengths (Humphrey et al., 2016;
Kumanlioglu & Fistikoglu, 2019). Various
integration strategies have been proposed,
including model output fusion (Zhang et al.,
2020), physics-guided ML where physical
constraints are embedded into loss functions
(Khandelwal et al.,, 2020), and feature
augmentation using PBHM-simulated variables
as additional ML inputs (He et al., 2021). For
instance, Humphrey et al. (2016) demonstrated
improved monthly flow predictions by coupling a
conceptual model with ANN, while He et al.
(2021) showed enhanced daily streamflow
simulation through GR4J-LSTM integration.

However, most existing work has focused on
LSTM-based integrations (Kwak et al., 2022;
Mei et al., 2024), leaving other ML methods such
as random forests (RF), extreme learning
machines (ELM), and XGBoost (XGB) relatively
unexplored. Additionally, few studies rigorously
compare hybrid models against standalone ML
approaches (Hao & Bai, 2023) to determine
whether performance gains stem from integration
or simply from the use of ML.

In the Abaya-Chamo Lake basin of Ethiopia,
where the studied watershed is found, previous
hydrological studies have predominantly relied
on PBHMs such as SWAT (Ayalew et al., 2023;
Mada & Nannawo, 2023; Beza et al., 2024;
Darota et al., 2024), HEC-HMS (Ibrahim et al.,
2024), and MIKE11-NAM (Nannawo et al.,
2022), often at coarse temporal resolutions due to
concerns about input data variability. This study
seeks to address these gaps by evaluating
multiple integrated modeling approaches (GR4J
combined with RF, ELM, XGB, and LSTM)
through feature augmentation of GR4J simulated
outputs (simulated flow and state variables) as
input variables to the ML techniques. By
systematically assessing different integration
strategies in a data-scarce watershed, Bilate, this
research contributes to the broader hydrological
literature by: 1) identifying optimal integration
configurations other than the commonly used
LSTM approach; 2) clarifying whether GR4J
simulated output-augmented integrations
enhance predictive skill than the standalone base
model; and 3) providing a transferable framework
for improving streamflow predictions in
understudied watersheds of the basin.

2. Materials and Methods

2.1. Study Area Description

This study focused on the Abaya-Chamo Lake
basin, specifically examining the Bilate River
watershed, one of the major tributaries of Lake
Abaya. The study area encompasses the Bilate
River watershed upstream of the hydrological
station near Alaba Kulito town, covering
approximately 2,008 km? Geographically, the
watershed extends between 7°16'6"N to 8°6'45"N
latitude and 37°46'32"E to 38°14'55"E longitude
(see Figure 1).
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Figure 1. Geographical location of the study area

2.2. Data and data sources

This study utilized multiple datasets to
characterize the hydro-climatic settings of the
Bilate River watershed from 1985 to 2015.
Primary meteorological data, including daily
precipitation and minimum/maximum
temperature records, were obtained from the
Ethiopian Meteorological Institute (EMI).
Corresponding daily streamflow measurements
were collected from the Ministry of Water and
Energy (MoWE) of Ethiopia for the station near
Alaba Kulito town. To address missing values in

precipitation and temperature, we used the
Enhancing National Climate Services (ENACTS)
gridded dataset. This dataset has employed an
advanced blending algorithm to combine ground
measurements with satellite estimates and has
demonstrated strong agreement with observed
station data (Dinku et al., 2018). Recently,
Woldemariam et al. (2025) further validated
ENACTS’s applicability for hydrological studies
in the Rift Valley basin of Ethiopia. Table 1
presents detailed specifications of all datasets
used in this research.

Table 1. Hydro-meteorological datasets used in this study

Dataset Description Spatial Temporal Source Time span
Resolution Resolution

Station based -- 1985 - 2015

Precipitation Taor Anie
ENATS da 4 km daily EMA 1985 - 2015
Temperatur Station based -- 1985 - 2015
CMPErall®  "ENATSdata 4 km 1985 - 2015
Streamflow Station -- MoWE 1985 - 2015

2.3. Methodology XGB, and LSTM ML networks to simulate daily

This study is aimed at integrating the GR4J
conceptual hydrological model with RF, ELM,

streamflow in the Bilate River watershed, with
particular focus on a hydrological station near
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Alaba Kulito town. The methodology utilized
GR4J simulated outputs, including simulated
flow and state variables (production store and
routing store) as hydrologically significant
features, augmented with climate datasets to train
the ML models. These integrated approaches

leverage both hydrological processes
understanding of the conceptual model and data-
driven learning capabilities of ML models. The
complete methodological workflow implemented
in this study is demonstrated in Figure 2.
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Figure 2. Conceptual framework for integration of the GR4J conceptual model with ML model

2.3.1. Data preparation
The station-based precipitation and temperature
records had missing values, which were filled
using the 4 km resolution gridded ENACTS
weather dataset. Similarly, missing timestamps in
the streamflow data were imputed using Random
Forest regression, a robust machine learning
approach for hydrological data imputation and
rectification (Hamzah et al., 2021).
Then, as PET is a critical input for the GR4J
model, it was computed using Enku’s
temperature method (Enku & Melesse, 2013), an
empirical approach validated for Ethiopia. This
method provides reliable PET estimates while
requiring only temperature data, making it
suitable for data-scarce regions.
()" (1)
k
Where PET is the potential evapotranspiration
(mm/day); Twe is the daily maximum
temperature in °C; n = 2.5, k = 48*Tm — 330 for
combined wet and dry conditions, where Ty is

PET =

the long-term daily mean maximum temperature
in oC.

Moreover, the streamflow records at the target
station also exhibited statistical inconsistencies.
Adjustments were done wusing empirical
cumulative distribution function (CDF) matching
and quantile mapping techniques (Nguyen et al.,
2024) to secure temporal consistency, an
imperative step for reliable hydrological
modeling. Additionally, the streamflow data had
high-frequency noise that distorted hydrological
patterns and compromised model performance.
The application of low-level wavelet
transformation reduced this noise while
maintaining critical hydrological signals in the
time series. Then, datasets were converted to
NumPy arrays to meet the input requirements for
both the GR4J hydrological and the ML models.

2.3.2. Conceptual hydrological model (GR4J)
The GR4J (Génie Rural a 4 parameters
Journalize) was selected for this study as a
parsimonious yet robust conceptual hydrological
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model (Anshuman et al., 2021). As demonstrated
by Perrin et al. (2003), this four-parameter model
effectively simulates daily streamflow using only
precipitation and potential evapotranspiration
inputs, making it particularly suitable for data-
scarce regions. Its structure captures key
hydrological processes through four calibrated
parameters: X, represents the maximum capacity
of the production store (mm), X, governs
groundwater exchange, X3 determines the routing
store capacity (mm), and X4 controls the unit
hydrograph time (days) (Anshuman et al., 2021;
Asgari et al., 2025). To further improve model
performance, an additional calibration parameter,
scale factor (Sr), was incorporated, intending to
mitigate measurement errors and model structural
limitations.
This model was implemented in Python utilizing
the Digital Earth Africa Sandbox and its
computational resources (dual-core processor,
16GB RAM) (Digital Earth Africa, 2025). The
model architecture was designed to process daily
climatic inputs, specifically precipitation (P) and
potential evapotranspiration (PET) time series.
The simulation function was developed to
process daily inputs of precipitation (P) and
potential evapotranspiration (PET) over n time
steps. For each time step ¢, a stepwise and
simplified algorithm was implemented to
successfully run the GR4J model. The stepwise
algorithm employed is presented as follows.
i. Production store update
Production store update with precipitation:
Se.+ P ifP >0

%=, ifR<0
Effect of Evapotranspiration:

St =S¢ — E¢, S; = max(§;, 0) 3)
ii. Calculation of percolation
Percolation is the water infiltrated from the
production store to the routing store (Perrin et
al., 2003).
Water transfer from S to R was calculated using
a nonlinear function:

Perc, = [\/i * <1 — max (O, 1

1 1.2
St )1+max(x2,10‘8)
X, + e)

St =min (S,x1) (2)

Where S; = S; — Perc;; Ry = R;_1 + Perc; and
€ = very small number for numerical stability

iil. Runoff Generation:

Direct runoft (Qq) is computed from the routing
store using a nonlinear runoff-generating
equation.

Qd, = [Re+ (1 - exp (- i))]“ (5)

X3
To ensure non-negative routing storage:

R; = max(R; — Qd;, 0) (6)
Total simulated flow was scaled by applying a
scale factor (Sy)

Q¢ = Qdy - S¢ (7)

Then the above algorithm returns time series
GR4J simulated flow and corresponding values
of the two state variables, production store and
routing store (Dambr¢ et al., 2024).
The optimal parameter values for the GR4J
model were determined through automated
calibration utilizing the Differential Evolution
(DE) algorithm. The optimization process
employed KGE as the objective function, which
evaluates model performance by simultaneously
considering correlation, variability, and biases.

2.3.3. Long Short-Term Memory (LSTM)
In this study, LSTM with residual connection was
used for its performance in capturing sequential
features characteristics to predict streamflow (Le
et al., 2021). LSTM architecture is a special type
of Recurrent Neural Network (RNN) which is
capable of learning long-term dependencies in
sequence prediction problems (Wegayehu &
Muluneh, 2022). The Architecture of an LSTM
network built around memory cells whose
information is manipulated by three gates: an
input gate, a forget gate, and an output gate (Gers
& Cummins, 2000).
The input layer accepts sequences of shape [L, F],
where L is the sequence length and F is the
number of features at each time step t. This
sliding window approach is common in
hydrological time series forecasting (Xiang et al.,
2020; Le et al., 2021). For a given time step t, the
input vector is:

x¢ = [F10 Faou Fap -, Fre| € R, ®)

t=12,..,L
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The input sequence for a sample at time t can be
expressed as:

X¢ = [XeoL+1 KemL42s s Xe] € REXF )
Each LSTM layer processed the input sequence
using a recurrent structure with memory cells,
governed by forget, input, and output gates.
Forget gate: information that is no longer useful
in the cell state is rejected by the forget gate (Gers
& Cummins, 2000). It takes X; (input at time t)
and /.; (previous cell output), and multiplies
weight followed by the addition of bias (Siami-
Namini et al., 2019). The result passes through an
activation function, which gives a binary output,
0 and 1. If the cell state output is 0, the
information is forgotten, and if it is 1, the
information is retained for future use (Greff et al.,
2017).

ft = o(Welh¢_4, %] + bg) (10)
Input gate: The addition of information to the
cell state is done by the input gate. The
information is first gated by a sigmoid function,
which uses the inputs h.; and X; to filter and
decide which values to remember. The tanh
function is then applied to generate a vector with
values ranging from -1 to +1 that contains all of
the possible values from h «.; and x «. Finally, the
vector and regulated values are multiplied to
obtain useful information. This two-step process
creates a candidate value that is added to the state
(Graves et al., 2013).

i = o(Wilhe_q, x¢] + by) (11)
C; = tanh(W,. [h¢_y, X¢] + be) (12)
C, = (fr.Cooq + ir. ) (13)

Output gate: The output gate is in charge of
extracting useful information from the current
cell state and presenting it as output (Kratzert et
al., 2018). To begin, a vector is created by
applying the tanh function to the cell. The
information is then regulated using the sigmoid
function and filtered by the values to be
remembered via hy; and X; inputs. Finally, the
vector and regulated values are multiplied and
sent as output and input to the next cell (Greff et
al., 2017).

0¢ = 6(Wo[h¢—1,%¢] + by) (14)

h; = O; * tanh(C,) (15)
Where W, W, W., W,: weight metrics for forget,
input, candidate, and output gate; bf, bi, be, bo:
bias vectors; tamh: activation function, o
sigmoid activation function, X,: input at time t, /..

1 previous cell output, f;: information retained at
forget gate, i, regulated information at input gate,
C:: vector ranging -1 to 1, C;: useful information
at input gate, O, output, 4, input to the next cell.

2.3.4. Random Forest (RF)

RF is an ensemble machine learning algorithm
that builds multiple decision trees during training
and combines their predictions, typically
averaging them for regression tasks (Breiman,
2001). Its ability to capture nonlinear
relationships and manage multi-dimensional
datasets makes it a prevalent choice for
hydrological modeling (Tyralis &
Papacharalampous, 2019). By introducing
randomness through bootstrapped training
samples and random feature selection at each tree
split, RF improves model generalization and
robustness (Cutler et al., 2012). Compared to
deep learning models, RF requires minimal
hyperparameter tuning, offering computational
efficiency that is particularly valuable for
hydrological applications.

Recent studies highlight RF’s effectiveness in
streamflow forecasting. For instance, Li et al.
(2019) demonstrated its strong performance in
predicting daily streamflow, while Zhang &
Thorburn (2022) noted its resilience to missing
data and noise, common challenges in
hydrological datasets. These qualities make RF
well-suited for modeling complex hydrological
systems.

In basins with limited data, such as the Bilate
watershed, RF offers a powerful, data-driven
solution for streamflow prediction. Its ability to
integrate diverse environmental data sources
enhances its utility in water resource
management, making it an essential tool for
researchers.

2.3.5. Extreme Learning Machine (ELM)
ELM is a single-hidden-layer feedforward neural
network popular for its fast training and robust
generalization (Huang et al.,, 2006). Unlike
conventional neural networks that rely on
iterative  backpropagation, ELM randomly
initializes the weights and biases of its input layer
and analytically computes the output layer
weights using least-squares optimization (Huang
et al., 2011). This approach significantly reduces
computational demands while preserving high
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predictive accuracy, making ELM effective for
hydrological modeling, where nonlinear
relationships are dominant (Yaseen et al., 2016).
Its ability to model nonlinear functions without
extensive parameter tuning makes it well-suited
for real-time forecasting in regions with limited
data (Adnan et al., 2019). ELM has comparable
performance with deep learning models like
LSTM networks, in situations with limited
training data (Tao et al., 2022).

2.3.6. Extreme Gradient Boosting (XGB)
XGB, an ensemble machine learning method, is
excellent in regression and classification by an
optimized gradient boosting framework. It uses
regularization to mitigate overfitting and captures
nonlinear relationships, making it suitable for
hydrological ~ modeling. By iteratively
constructing decision trees that correct errors
from prior iterations, XGB achieves fast training
and scalability for large datasets (Chen &
Guestrin, 2016).

Recent studies demonstrate that XGB often
surpasses conventional models like Random
Forest and Artificial Neural Networks in both
accuracy and computational efficiency, especially
for high temporal resolution predictions (Hao &
Bai, 2023).

2.3.7. Integration of GR4J with LSTM, RF,
ELM, and XGB

This study proposed an integrated modeling
framework that augments simulation outputs of
the GR4J model to train ML models, LSTM, RF,
ELM, and XGB. The primary objective is to
enhance streamflow prediction by combining
GR4J simulated outputs, including streamflow
and state variables (production store, PS, and
routing store, RS), with climate data
(precipitation, P, potential evapotranspiration,
PET, and net precipitation) and their derived
features. The input features used in this study can
be categorized into three. 1) Hydrological
features: representing watershed response
dynamics (GR4J-simulated streamflow, PS, RS).
2) Climate features: External drivers of
hydrological processes (P, PET, P_net). 3)

Temporal features: Capturing seasonal patterns
(sine-transformed day of the year).

To ensure the selection of the most relevant input
features for the models, a series of preprocessing
steps was employed. Initially, temporal lags
ranging from 1 to 10 days were incorporated to
capture the influence of antecedent conditions on
streamflow, accounting for the delayed effects of
meteorological inputs. Next, seasonality was
encoded using a sine transformation of the day-
of-year to effectively represent annual recurring
patterns in the dataset and enhance the models’
ability to capture seasonal patterns. Then, rolling
statistics were computed with moving average
windows of 3, 5, and 7 days to smooth short-term
variability while preserving meaningful signals in
the time series. This step reduced noise in the
data, making the models focus on significant
signals. Finally, feature selection was performed
using Pearson’s correlation to identify the most
important and non-redundant features. Features
with an absolute correlation coefficient (|r])
greater than 0.4 with the target were retained. To
mitigate multicollinearity, features exhibiting an
absolute feature-to-feature correlation greater
than 0.8 were assessed, and the feature with the
lower target correlation was removed, thus
keeping a balanced and effective features for the
models.

2.3.7.1. Data Splitting and Normalization

A two-way data split was applied in this study to
segment the data into training and testing sets to
train and evaluate the ML models. A temporal
split method was applied to maintain
chronological order, ensuring the training period
preceded the testing period. Training from 1985
to 2008, used for model training, and testing from
2009 to 2015 for performance assessment.
Splitting of the data was conducted before
applying any feature engineering tasks, such as
rolling means, to prevent data leakage between
training and testing datasets.

To ensure ML’s training stability and better
results, all variables, both in training and testing
datasets, were normalized. The Min-Max scaler
was applied to scale the features and the target to
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the range 0 to 1 (Liu et al., 2020). MinMaxScaler
uses this formula.
X Xt - Xmin (16)

scaled =
Xmax - Xmin

Where Xscaeq: normalized value at time £, X;:
Value before normalization at time #; Xya: the
maximum value within the time series; X»: The
minimum value within the time series.

2.3.8. Hyperparameter tuning
Hyperparameters are predefined parameters that
cannot be learned during model training, yet they
significantly influence an ML model’s
performance. Properly optimized
hyperparameters boost model accuracy and
optimize training efficiency.

For LSTM models, essential hyperparameters
include the number of LSTM layers, units per
layer, activation function, dropout rates,
regularization parameters, learning rate, batch
size, and the number of epochs (Bartz-beielstein
& Zaefferer, 2023).

Hyperparameter tuning for the LSTM model was
performed using Keras Tuner, an open-source
optimization tool integrated with Python 3.8 and

TensorFlow/Keras. The model was compiled
using the Adam optimizer and mean squared error
(MSE) loss function (Wegayehu & Muluneh,
2021, 2022). The tuning process encompassed 75
trials, with each trial running for a maximum of
50 epochs and incorporating EarlyStopping with
a patience of 10 epochs to mitigate overfitting.
Following the initial tuning, additional trial-and-
error adjustments were made to refine the
hyperparameters further. Key LSTM
hyperparameters, such as sequence length and the
number of epochs, were determined through
iterative experimentation to identify optimal
values for the model. The optimization process
was done on the Digital Earth Africa Sandbox
Computing platform, equipped with a dual-core
processor and 16 GB of RAM, providing
computational resources for the tuning task.
Hyperparameters for RF, ELM, and XGB were
tuned using the Grid Search method, which
exhaustively evaluates predefined
hyperparameter combinations through cross-
validation. For detailed information on the
hyperparameters and optimal values, see Table 2.

Table 2. Optimal hyperparameters for FR, ELM, XGB, and LSTM

Hyperparameters for RF
Hyperparameter Optimal Values Description
n_estimators 200 Number of trees
max_depth 10 Maximum depth of trees
min_ samples_split 2 Minimum samples to split a node
min samples_leaf 10 minimum samples at a leaf node
Hyperparameters for ELM
n_hidden 20 Number of hidden neurons
activation sigmoid Activation function
Hyperparameters for XGB
n_estimators 100 Number of boosting rounds
max_depth 3 Maximum depth of trees
learning_rate 0.05 Step size shrinkage
subsample 0.8 Fraction of sample per tree
colsample bytree 0.6 Fraction of features per tree
Hyperparameters for LSTM
num_layers 3 Number of LSTM layers
units_1 128 Number of units in the first layer.
units 2 64 Number of units in the second layer
units 3 32 Number of units in the third layer
dropout rate 1 0.5 Dropout rate for the first layer
dropout rate 2 0.4 Dropout rate for the second layer
dropout rate 3 0.4 Dropout rate for the third layer
11 reg 8.00E-06 L1 regularization to penalize large weights.
12 reg 8.30E-06 L2 regularization to penalize large weights.

learning rate 0.0001

Learning rate for the Adam optimizer
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batch_size 16 Number of samples per gradient update
Sequence length 15 Number of time steps in the LSTM input sequence
Epochs 100 Number of training iterations

2.3.9. Model Performance Evaluation Metrics
Hydrological model performance is usually
assessed using multiple metrics, each offering
unique understandings into different aspects of
model accuracy (Moriasi et al., 2007). In this
study, we employed five widely recognized
evaluation metrics in hydrology, namely, NSE,
R2, RMSE, MAE, and KGE. These metrics are
calculated as follows (Nash & Sutcliffe, 1970;
Duc & Sawada, 2023):

Where Qobs and Qsim represent observed and
simulated streamflow at time step i, and Oobs and
Osim  denote their respective means, n is the
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Figure 3. Time series GR4J model input datasets

3. Results and

Discussion

3.1. GR4J Conceptual Model

After applying appropriate data processing steps,
including handling missing values, adjusting data
consistency, and correcting outliers, the time
series input datasets for the GR4J model
(precipitation P, potential evapotranspiration
PET, and observed streamflow Q) are plotted
and shown in Figure 3. The statistical
characteristics of the data are summarized in
Table 3.

As shown in Table 3, Precipitation exhibits
significant variability, as indicated by its large

standard deviation, and is positively skewed,
suggesting that while most days experience
minimum rainfall values, there are occasional
instances of heavy rainfall. In contrast, Potential
Evapotranspiration (PET) remains relatively
stable, showing small fluctuations and a nearly
symmetric distribution. Streamflow, although
more variable than PET, is less so compared to
precipitation. It also follows a positive skew,
indicating that streamflow values are generally
low, with occasional high flow events.
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Table 3. Statistical characteristics of the GR4J’s input data

Variables/Stat. min max mean Std. skewness Kurtosis sample size
Precipitation (mm) 0.00 23.53 2.99 4.34 1.80 3.16 11322
PET (mm) 1.38 5.85 3.34 0.63 0.08 -0.32 11322
Streamflow (mm) 0.00 1.75 0.48 0.51 1.14 0.07 11322

3.2. GR4J Model Calibration

The GR4J model parameters were calibrated
using DE, applying the approach of
Napiorkowski et al. (2023), with KGE serving as
the objective function. This study optimized the

four standard GR4J parameters (X;, X>, X3 and
X,) along with an additional scale factor (Sy). The
resulting calibrated parameter values (see Table
4) were 939.42 mm for X1, -0.70 mm for X2, 1.00
mm for X3, 2.73 days for X4, and 0.60 for Sf.

Table 4. GR4J model calibration parameters and their corresponding values

Parameter Description Optimal value
X1 Maximum capacity of the production store (mm) 939.42
X Groundwater exchange coefficient (mm) -0.70
X; A day ahead, maximum capacity of the routing stores (mm) 1.00
X4 The time base of the unit hydrograph (days) 2.73
Sy Scale factor 0.60

The GR4J model produced three outputs: daily
simulated flow and two state variables, the
production store and the routing store. To

a

visualize the time series GR4J simulated outputs,
see Figure 4.
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Figure 4. a: Observed streamflow time series; b: GR4J simulated streamflow time series; ¢: Production store time
series; d: Routing store time series
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3.3. Feature Selection

The dataset initially comprised 55 features,
encompassing original climate variables, GR4J-
simulated outputs, and derived features from
lagged values and rolling averages. However, not
all features contribute equally to model training,
and including irrelevant features can negatively
affect training speed and predictive performance.

Therefore, a feature selection process was
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executed based on Pearson’s correlation with the
target and with features themselves. This
approach resulted in the selection of eleven key
features for training and testing the proposed
models.

Figure 5 presents the correlation values of the
selected features with the target and among
themselves, offering insights into their
importance and inter-relationships.
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Figure 5. Heat-map showing correlation of selected features to the target, and feature to feature; it shows relatively
strong correlation with the target and low correlation with each other

The heat-map visualization confirms that the
selected features exhibit strong relationships with
the target variable while maintaining a low
correlation with each other, effectively mitigating
the issue of multicollinearity and offering insights
into their importance and inter-relationships.

3.4. Model's performance evaluation

The GR4J model was calibrated using data from
1985 to 2015. To facilitate a comparative analysis
with the integrated models, the dataset was
divided into training (1985-2008) and testing
(2009-2015) periods. This consistent partitioning

ensures fair performance evaluation across all
five models. Although the terms ‘training’ and
‘testing’ are not conventionally used for GR4J,
they are adopted here to keep alignment with the
integrated models.

To achieve enhanced streamflow prediction
capability, we integrated GR4J with advanced
ML techniques. The results in Table 5
demonstrate  significant improvements in
predictive performance across all integrated
models compared to the standalone GR4J, with
nuanced variations among the ML integrations.

Table S. Performance metrics and their corresponding values for all models during training and testing

Model GR4J GR4J-RF GR4J-ELM GR4J-XGB GR4J-LSTM
Datasets Train Test Train Test Train Test Train Test Train Test
RMSE 0.302 0.347  0.107 0.153 0.151 0.148 0.140 0.141 0.149 0.138
MAE 0.204  0.255  0.073 0.107 0.104 0.102 0.099 0.098 0.102 0.096
NSE 0.65 0.53 0.87 0.72 0.73 0.74 0.77 0.76 0.74 0.77
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KGE 0.80 0.69 0.87 0.82

0.79

0.83 0.80 0.83 0.79 0.86

R? 0.70 0.70 0.87 0.73

0.73

0.75 0.77 0.77 0.74 0.79

Below, the findings are analyzed in detail,
discussing models’ strengths and weaknesses
based on the metrics and hydrological
implications.

3.4.1. Performance based on RMSE and MAE
As 1illustrated in Table 5, RMSE and MAE
provide complementary insights into model
accuracy, with RMSE emphasizing larger
deviations and MAE offering a balanced measure
of average prediction consistency without
overweighting outliers. The standalone GR4J
model exhibited a training RMSE of 0.302 mm,
increasing to 0.347 mm during testing, while
MAE rose from 0.204 mm to 0.255 mm. In
contrast, in all integrated models (GR4J-RF,
GR4J-ELM, GR4J-XGB, and GR4J-LSTM),
substantial improvements were achieved.

During training, GR4J-RF achieved the lowest
errors (RMSE = 0.107 mm; MAE = 0.073 mm),
leveraging its ensemble tree structure to
effectively model nonlinear hydro-
meteorological relationships. It was followed by
GR4J-XGB (with RMSE of 0.140 mm, and MAE
of 0.099 mm), GR4J-LSTM (with RMSE of
0.149 mm, and MAE of 0.102 mm), and GR4J-
ELM (with RMSE = 0.151 mm, and MAE =
0.104 mm). These results indicate the hybrid
models’ superior ability to fit observed data.
During testing, GR4J-LSTM outperformed other
models (RMSE = 0.138 mm; MAE = 0.096 mm),
likely due to its sequential learning capability,
which effectively captures temporal
dependencies in hydrological time series. GR4J-
XGB closely followed (RMSE = 0.141 mm;
MAE = 0.098 mm), reflecting its gradient-
boosting precision, while GR4J-ELM (RMSE =
0.148 mm; MAE = 0.102 mm) and GR4J-RF
(RMSE = 0.153 mm; MAE = 0.107 mm)
exhibited slightly higher errors. Although GR4J-
RF excelled in training, its minor generalization
gap suggests potential overfitting compared to the
GR4J-LSTM and GR4J-XGB. Collectively, the
integrated models’ reduced RMSE and MAE
values reflect their enhanced predictive accuracy
over the standalone GR4J, with GR4J-LSTM
emerging as the most effective for operational
streamflow prediction.

3.4.2. Performance based on NSE, KGE, and R?
Based on the results shown in Table 5, further
evaluation of model performance was done using
the NSE, KGE, and R?, which assess variance
explanation, bias-variability-correlation balance,
and trend alignment, respectively. The standalone
GR4J exhibited moderate performance, whereas
all integrated models demonstrated significant
improvements.

GR4J achieved a training NSE of 0.65,
explaining 65% of streamflow variance relative
to a mean-flow baseline, but this declined to 0.53
during testing. Its KGE (integrating correlation,
variability, and bias) decreased from 0.80
(training) to 0.69 (testing), while R* remained
stable at 0.70, indicating reliable but limited
trend-tracking capability. These results suggest
that GR4J captures basic hydrological patterns
but struggles with complex, nonlinear dynamics.
The hybrid models consistently outperformed
GR4J. GR4J-RF achieved the highest training
NSE (0.87), KGE (0.87), and R* (0.87),
benefiting from its ensemble tree-based nonlinear
modeling. However, its testing performance
declined (NSE = 0.72; KGE = 0.82; R? = (0.73),
indicating a slight generalization gap.
GR4J-LSTM dominated in testing, achieving the
highest NSE (0.77), KGE (0.86), and R? (0.79),
reflecting its superior generalization via
sequential learning. During training, it achieved
NSE of 0.74, KGE of 0.80, and R? of 0.74.
Similarly, GR4J-XGB matched GR4J-LSTM’s
testing NSE (0.77) while achieving a KGE of
0.83 and R? of 0.77. GR4J-ELM also showed
consistent improvements (training: NSE = 0.73,
KGE =0.79, R?=0.73; testing: NSE = 0.74, KGE
= 0.83, R? = 0.75), balancing efficiency and
predictive capability.

In general, the integrated models outperformed
the GR4J model, with GR4J-LSTM and GR4J-
XGB leading in generalization (testing NSE =
0.77, KGE up to 0.86, R? up to 0.79), GR4J-RF
excelling in training fit, and GR4J-ELM offering
a computationally efficient alternative. These
improvements accentuate the value of integrating
ML with GR4J by augmenting simulated outputs
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to capture complex hydrological dynamics, with
LSTM and XGB being particularly suited for
high-accuracy applications.

In addition to the performance metrics presented
in Table 5, Figure 6 illustrates the time series plots

of the observed and simulated streamflow of the
standalone GR4J model, and its integration with
the ML models.
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Figure 6. Time series observed and predicted streamflow during training and testing; a: for GR4J standalone model,
b: for GR4J-RF integrated model, c: GR4J-ELM integrated model, d: for GR4J-XGB integrated model, and e: for
GR4J-LSTM integrated model.

3.5. Discussion

The standalone GR4J model demonstrated
moderate performance in streamflow prediction,
effectively capturing general hydrological trends
(Dambré et al., 2024). However, its limitations
are apparent when addressing daily streamflow
variability, particularly in highly dynamic
watersheds like Bilate. With only four parameters
and a simplified process representation, GR4J
struggles to  capture  complex  hydro-

meteorological dynamics, a constraint well-stated
in previous studies (Perrin et al., 2003; Kunnath-
Poovakka & Eldho, 2019; Anshuman et al., 2021;
Kodja et al., 2023). Figure 6a highlights these
constraints, revealing  systematic  biases,
overestimation  of  peak  flows, and
underestimation of low flows, consistent with
findings by Kapoor et al. (2023) and Yang et al.
(2024). These limitations emphasize the need for
structural enhancements to improve predictive
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performance, especially under extreme flow
conditions.

3.5.1. Advantages of GR4J-ML Models

The integration of GR4J with ML methods, RF,
ELM, XGB, and LSTM networks remarkably
improved predictive accuracy across both
training and testing phases. This enhancement
arises from synergizing GR4J’s physical
interpretability with ML’s ability to model
nonlinear relationships and temporal
dependencies (Tian et al., 2018; Sezen & Partal,
2022; Mei et al., 2024).

During training, all integrated models
outperformed standalone GR4J, with GR4J-RF
achieving the highest NSE (0.87) and KGE
(0.87). However, while GR4J’s testing
performance declined (NSE = 0.53; KGE =0.69),
the integrating models maintained high accuracy,
particularly GR4J-LSTM (NSE = 0.77; KGE =
0.86), demonstrating superior generalization
across flow regimes. These results align with
Konapala et al. (2020), who indicated ML’s
capacity to balance correlation, variability, and
bias, making integrated models ideal for data-
scarce regions like the Bilate watershed, where
accurate water management is critical.

Time series analyses (Figures 6b to 6e) and
performance metrics (Table 5) further confirm the
integrated models’ excellent alignment with
observed streamflow data, even during extreme
events.  Although  GR4J-LSTM  slightly
outperformed others, all integrated models
addressed a key limitation of purely data-driven
approaches: the lack of hydrological
interpretability =~ (Mohammadi, Safari, &
Vazifehkhah, 2022). By training ML models with
GR4J’s physically-based features, such as
simulated runoff, the integrated models provide a
hydrologically informed framework, particularly
valuable in regions with limited observational
data (Armstrong et al., 2025). This integration
effectively bridges the gap between conceptual
and data-driven modeling, enhancing both
accuracy and  operational  applicability.
Comparative Performance and Hydrological
Implications

The success of integrated modeling aligns with
recent studies advocating such approaches
(Mohammadi et al., 2022; Kapoor et al., 2023;
Yang et al., 2024). These models retain GR4J’s
physical interpretability while leveraging ML’s
strengths in capturing complex patterns and
nonlinear relationships (Hah et al., 2022; Liu et
al., 2022). For instance, GR4J-LSTM’s ability to
capture temporal dependencies (test NSE = 0.77,
KGE = 0.86) verifies Mei et al. (2024), who
demonstrated that coupling conceptual models
with deep learning improves predictive
performance by modeling temporal variability in
streamflow. Similarly, Yang et al. (2024)
emphasized the role of integrated frameworks in
balancing physical practicality with data-driven
adaptability to complex rainfall-runoff processes,
achieving high accuracy in runoff predictions,
particularly during extreme events, a finding
reflected in the superior predictive performance
of GR4J-LSTM and GR4J-XGB in this study.

Further support comes from Mohammadi et al.
(2022), who found that combining conceptual
models with ML reduces errors and enhances
generalization while mitigating the “black box”
nature of pure ML techniques. Results of this
study reinforce this, as GR4J’s simulated features
provided a meaningful basis for ML algorithms,
improving both accuracy and interpretability.

3.5.2. Long-term mean daily streamflow
evaluation

The evaluation of long-term mean daily
streamflow predictions (Figure 7) provides
critical understanding into model performance
across the complete hydrological spectrum. Our
analysis reveals that the integrated models
(GR4J-RF, GR4J-ELM, GR4J-XGB, and GR4J-
LSTM) demonstrate superior accuracy in
capturing the full range of flow conditions
compared to the standalone GR4J model. This
enhanced performance is particularly evident in
their ability to reproduce both seasonal flow
patterns and extreme events, signifying these
integrated approaches effectively combine
physical process understanding with pattern
recognition capabilities.
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Figure 7. Long-term mean daily streamflow over days of the year

The standalone GR4J model exhibits systematic
biases that show significant structural limitations.
Consistent overestimation of high-flow events
suggests deficiencies in its representation of
quickflow  generation  processes,  while
underestimation of low flows indicates
inadequate  parameterization of baseflow
dynamics (Clark et al., 2017). These findings
align with previous studies showing conceptual
models often struggle to capture nonlinear
rainfall-runoff relationships, particularly in
watersheds with strong seasonality (Fowler et al.,
2020). The integrated models' ability to overcome
these limitations supports recent arguments for
combining physical and ML techniques in
hydrological modeling (Shen et al., 2018).

From a practical perspective, these performance
differences have significant implications for
water resources management. The integrated
models' accurate prediction of peak flows could
substantially enhance flood early warning,
reducing risks for the downstream ecosystem
(Emerton et al., 2018). Similarly, their better
representation of low-flow conditions enhances
drought monitoring capabilities, supporting water
allocation during dry seasons (Loon et al., 2016).
Our findings contribute to ongoing discussions
about optimal modeling approaches in data-
scarce regions. Though some studies promote
pure data-driven techniques, our results suggest
integrated models provide significant advantages
by maintaining physical interpretability while

improving predictive accuracy (Nearing et al.,
2020). This balance is valuable for operational
water management, where both performance and
interpretability are needed.

4. Conclusion

This study demonstrates that integration of the
GR4J conceptual model with ML techniques, RF,
ELM, XGB, and LSTM significantly enhances
streamflow prediction accuracy in the Bilate
River watershed. The integrated models
consistently outperformed the standalone GR4J
across multiple performance metrics, effectively
combining GR4J’s physical interpretability with
ML’s ability to capture nonlinear relationships
and temporal dependencies. This integration
successfully addresses key limitations of GR4J,
particularly in modeling high daily streamflow
variability and extreme flow events (high and low
flows).

GR4J-LSTM and GR4J-XGB emerged as the
most robust operational prediction,
demonstrating superior generalization with test
NSE values of up to 0.77 and KGE values
reaching 0.86. These models effectively
leveraged sequential learning (LSTM) and
gradient-boosting precision (XGB) to improve
temporal flow predictions. Meanwhile, GR4J-RF
excelled in training performance (NSE = 0.87),
though it exhibited a slight generalization gap
during testing. GR4J-ELM  provided a
computationally efficient alternative, maintaining
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comparative accuracy (test NSE = 0.74), making
it a viable option for applications with limited
computational resources.

These improvements align with prior studies
promoting integrated modeling to balance
physical process interpretability with ML
adaptability. The integrated models’ ability to
preferably predict both low and peak flows
supports critical water resource management
applications in the Bilate River basin, such as
flood and drought monitoring. Based on the
findings, for achieving the highest predictive
accuracy and robust generalization, particularly
for capturing complex temporal patterns, GR4J-
LSTM is the recommended choice, assuming
sufficient computational resources and data are
available. For a powerful and often more
computationally efficient alternative to LSTM
that also provides excellent accuracy and feature
importance  insights, GR4J-XGB is a
recommended option. For situations where
computational resources are very limited and
rapid model implementation is a priority, GR4J-
ELM offers a strong balance of acceptable
accuracy and high computational efficiency.
Though this study confirms the wvalue of
integrated models, several challenges and
opportunities remain for future research. Future
work should focus on optimizing the
computational demands of integrated models like
GR4J-LSTM. A critical future direction is the
assimilation of additional data sources, such as
satellite-derived soil moisture and precipitation
products, as well as climate reanalysis data, to
enhance model input and potentially improve
predictions, especially in data-scarce regions.
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