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Abstract

Water productivity is essential for sustainable agriculture, especially in semi-arid regions with limited water resources. In the
Moghan Plain during 2020-2024, this study evaluates Net Biomass Water Productivity (NBWP) and Gross Biomass Water
Productivity (GBWP) in three agricultural fields (P, Q, and R) cultivating silage maize under center pivot irrigation from 2020
to 2024. Ground measurements of irrigation depth, crop yield, and evapotranspiration, combined with temperature and
precipitation data, were analyzed to understand temporal variations and the impact of environmental and management factors.
Results showed that NBWP increased from 2.42 to 3.03 kg/m® in Field P, 2.40 to 3.33 kg/m? in Field Q, and 2.12 to 3.56 kg/m?
in Field R, with Field Q achieving the highest gain (39%). GBWP fluctuated more significantly, ranging from 1.5 to 2.63 kg/m?,
with the lowest values in 2021 corresponding to drought conditions and high temperatures. Comparison between field data and
WaPOR satellite-based estimates revealed systematic underestimation by the portal, with GBWP and NBWP values
underestimated by 40-50%, mainly due to differences in spatial resolution, input data quality, and algorithmic assumptions for
evapotranspiration estimation, as well as its inability to capture localized agronomic practices such as crop rotation and
irrigation scheduling. The study also identified uniform irrigation rates applied throughout the crop cycle, ignoring the dynamic
water demands during different growth stages. This led to over-irrigation during maturity and under-irrigation during critical
reproductive phases, exacerbating water stress under high temperatures. The findings emphasize the necessity of integrating
precise field measurements with remote sensing data for accurate water productivity assessment. Implementing stage-specific
irrigation management can optimize water use efficiency and maintain crop biomass production under varying climatic
conditions. This research provides valuable insights for improving irrigation strategies and water resource management,
contributing to agricultural resilience in water-scarce semi-arid environments facing climate variability.
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1. Introduction

Water scarcity is recognized as one of the
fundamental challenges of the 2Ist century.
According to the Food and Agriculture Organization
of the United Nations (FAO), agriculture is both a
major cause and a victim of water scarcity,
accounting for approximately 70% of global water
withdrawals (Hoekstra and Mekonnen, 2012; FAO,
2020). Climate change, population growth, and
rising water demands across various sectors have
intensified competition for limited water resources
while also driving an increase in food demand by
more than 40% (Feng et al., 2015). Consequently,
adopting more efficient irrigation practices has
become essential (Hanjra and Qureshi, 2010;
Jagermeyr et al., 2016). Water scarcity impacts are
especially severe in arid and semi-arid regions,
where limited  precipitation  and  high
evapotranspiration rates exacerbate water stress
(UNEP, 2021). These regions face intensified
challenges in balancing water availability with
agricultural and ecological demands, making
efficient water management critical (World Bank,
2022).The concept of Water Productivity (WP)
serves as a metric for evaluating the performance of
both irrigated and rainfed agriculture. It is defined as
the amount of biomass produced per unit of water
consumed, which includes soil water available in the
root zone between planting and harvest, in-season
rainfall, and applied irrigation (Angus and Van,
2001). WP is recognized as a crucial indicator for
evaluating irrigation performance and informing
water resource management decisions (Molden et
al., 2010; van Halsema and Vincent, 2012).
Investigating water productivity provides essential
insights into the efficiency of water utilization in
agricultural production. This analysis facilitates the
identification of opportunities for enhancing
performance and optimizing resource management
(Zwart and Bastiaanssen, 2004; Steduto et al., 2012).
The accurate assessment of WP necessitates the
availability of reliable data concerning both crop
yield and water consumption; however, obtaining
such data at a large scale often presents significant
challenges (Karimi et al., 2013; Blatchford et al.,
2020). To improve water productivity in agriculture,
two primary strategies are typically employed: the
initiation of new irrigation projects; and the
optimization of existing irrigation systems through
comprehensive performance evaluation (Torres-
Cobo, 2024). Center pivot irrigation systems are
widely used due to their uniform water distribution,
automation, and higher efficiency compared to
surface irrigation methods (O'Brien et al., 2010).
Since their introduction in the 1950s, they have
advanced through innovations such as variable-rate
irrigation, precision water application, and
integration with decision-support tools (McCarthy et
al., 2014; Yari et al., 2017). However, actual field

performance often falls short of its theoretical
potential. This gap is attributed to factors such as
suboptimal system design, operational
inefficiencies, environmental variability, and poor
management (Lamm et al, 2012; Trout and
DelJonge, 2017). Traditional methods for assessing
irrigation performance—based on field
measurements—are time-consuming, expensive,
and spatially limited (Burt et al., 1997; Perry, 2011).
As aresult, there has been growing interest in remote
sensing technologies for evaluating irrigation
performance over large areas and extended periods
(Bastiaanssen et al., 2007; Irmak et al., 2011).

Recent advancements in remote sensing—
particularly through models like SEBAL and
METRIC—have greatly enhanced agricultural water
management by enabling large-scale evaluation of
water productivity using earth observation data.
These methods offer high spatial and temporal
resolution, allowing for detailed analysis across
extensive agricultural landscapes (Al-Bakri et al.,
2022). To support improved monitoring, the Food
and Agriculture Organization (FAO) launched the
Water Productivity Open-access Portal (WaPOR),
which provides satellite-based data on key water
balance components such as actual
evapotranspiration and biomass production (FAO,
2018). By minimizing the need for field
measurements, WaPOR facilitates cost-effective
calculation of water productivity indicators
(Chukalla et al., 2020; Blatchford et al., 2020). The
portal offers data at three spatial resolutions—250 m,
100 m, and 30 m—to meet varying analytical needs
(FAO, 2020). In a study conducted by Platonov et al.
(2008), remote sensing technologies were utilized to
assess water productivity in the Syr Darya Basin
located in Central Asia. The results revealed that
water productivity in this region ranged from 0 to 0.9
kg/m?, with 55% of the area demonstrating water
productivity levels below 0.30 kg/m?®. The authors
underscored the importance of enhanced water
resource management as a means to improve both
water productivity and agricultural yields. Patil et al.
(2014) conducted a comprehensive investigation
into agricultural water productivity within desert
farming systems in Saudi Arabia, utilizing remote
sensing products. Their research employed the
SEBAL model to estimate evapotranspiration and
the NDVI index to assess crop yield. The findings
indicated that water productivity for various crops
ranged from 0.38 to 2.01 kg/m?, showing moderate
agreement between satellite-based estimates and
field measurements. Franco et al. (2016) conducted
an estimation of water productivity (WP) within
watershed areas utilizing remote sensing data, the
Monteith and SAFER models, as well as Landsat 8
imagery. Their study underscored that water
productivity is influenced by varying spatial and
temporal conditions and illustrated the effectiveness
of remote sensing in accurately capturing these
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variations. The research conducted by Choudhury
and Bhattacharya (2018) employed Moderate
Resolution Imaging Spectroradiometer (MODIS)
satellite data to assess agricultural water productivity
in India. This study utilized Gross Primary
Production (GPP) and actual evapotranspiration
(ETa) data to produce comprehensive maps
illustrating ~ water  productivity = and  crop
evapotranspiration levels across India from 2007 to
2012. The findings revealed that Agricultural Water
Productivity (AWP) and Rainfall Water Productivity
(RWP) exhibited values ranging from 1.10 to 1.30
kg/m* and 0.94 to 1.00 kg/m?, respectively. More
recently, Chiraz et al. (2022) demonstrated that
water productivity in olive orchards varied
significantly based on the cultivation system
employed. Furthermore, remote sensing emerged as
an effective methodology for assessing soil moisture
and managing water productivity, thereby offering
substantial potential for enhanced decision-making
in agricultural water management. A recent study by
Fakhar and Kaviani (2024) evaluated the WaPOR
model across 16 provinces in Iran’s four main
climatic zones by comparing 10-day
evapotranspiration estimates from WaPOR and the
FAO-56 method. The highest agreement was
observed in semi-arid regions (R* = 0.95, RMSE =
0.43). The analysis showed notable ET variations in
the Caspian Sea and Zagros foothill areas between
2015 and 2022. Additionally, net blue water
productivity in rainfed lands was strongly linked to
precipitation. The results support WaPOR’s
reliability in estimating evapotranspiration and
managing agricultural water use across diverse
Iranian climates. Similarly, Safi et al. (2024)
assessed SDG 6.4.1 in Lebanon, showing that
WaPOR-based remote sensing data can effectively
estimate agricultural water productivity by using
actual evapotranspiration instead of water
withdrawals. Despite differences in absolute
values—mainly due to inconsistencies between
WaPOR and AQUASTAT irrigated area data—the
trends were consistent. WaPOR’s focus on actually
irrigated areas makes it a valuable tool for reliable
SDG monitoring in agriculture. In another study,
Veysi et al. (2024) utilized data from the FAO
WaPOR portal to assess crop water productivity in a
semi-arid basin in Iran. The findings revealed that
conventional indicators such as GWP and NWP may
not accurately reflect water productivity,
highlighting the necessity of developing a
dimensionless index for more precise identification
of low-productivity areas and improved water
resource management. Singh et al. (2024) employed
the SETMI model in conjunction with remote
sensing data to assess regional-scale water
productivity for wheat crops in a semi-arid region of
India. The results indicated considerable spatial and
temporal variation in water productivity for wheat,
with actual evapotranspiration estimates ranging

from 101 mm to 325 mm. This methodology
highlights the effectiveness of remote sensing in
delivering reliable assessments of water productivity
dynamics. Most recently, Mukandiwa et al. (2025)
assessed crop water productivity (CWP) in the
Chisumbanje sugarcane and Ratelshoek wheat farms
of Zimbabwe was assessed using data from the
WaPOR portal and the SEBS model. The results
showed that actual evapotranspiration (ETa) reached
9 mm/day in the summer and 3.98 mm/day in the
winter. Additionally, crop water productivity for
wheat ranged from 2.4-3.0 kg/m3, while for
sugarcane it ranged from 1.2—1.6 kg/m?.

The Moghan Plain is one of the most important
agricultural areas of Iran since the northwest of Iran
is characterized by strategic crops of silage maize,
wheat, and sugar beet. The region has good soils and
a fairly level topography, making mechanized
agriculture possible and modern methods of
irrigation, especially center pivot irrigation.
Nonetheless, notwithstanding these benefits, the
region is severely affected by changes in semi-arid
weather, which is characterized by both its low
amounts of rainfall of unequal distribution, high
evapotranspiration levels, and a rising rate of
drought occurrences. With these climatic factors and
unsustainable water resource management policies--
including excessive extraction of groundwater and
standard irrigation timings that fail to factor in the
varying needs of different crops-scarce water
resource management issues come to the fore,
jeopardizing the sustainability of long-term
agricultural practices. These challenges make the
Moghan Plain an ideal case study for evaluating and
improving irrigation water productivity (Nazari et
al., 2018; Choopan and Emami, 2020; Akhavan et
al., 2021; Abdiaghdam Laromi et al., 2024).

In this context, the current research endeavors to
estimate the water productivity of center pivot
irrigation systems utilizing data sourced from the
WaPOR portal within the Moghan Plain region.
Furthermore, the study aims to evaluate the existing
water productivity gap in the designated study area.

2. Materials and Methods

2.1. Study Area

The study area is geographically located within the
Moghan Irrigation Scheme in Parsabad County,
Ardabil Province, where forage maize is the primary
cultivated crop (Figure 1). Due to its geographical
position and access to surface water resources, this
region is organized as one of Iran's most important
agricultural and livestock production zones, playing
a significant role in national crop production,
particularly maize. It is among the largest surface-
water-based irrigation projects in the country. The
total area covered by the Moghan Irrigation Scheme
is approximately 40,000 hectares. This scheme is
situated between the Aras and Balharoud rivers, and
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its water resources are utilized to irrigate agricultural
lands. Based on the De Martonne aridity index
(Equation 1), calculated using long-term average

area, field capacity, and wilting point moisture
content for forage maize fields, are provided in Table
1.

annual precipitation (269.13 mm) and mean annual [ = P
temperature (15.92 °C), the climate of the region is (T + 10) 1)
classified as semi-arid, consistent with previous
studies (Dinpashoh and Allahverdipour, 2025). Where:
Climatic conditions in the region are characterized I = Aridity Index (De Martonne);
by notable variability in temperature and P = Mean annual precipitation (mm);
precipitation, with annual averages illustrated in T = Mean annual temperature (°C).
Figure 2 for the period 2020-2024. Detailed soil and
crop characteristics, including soil texture, cultivated
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Figure 1- Geographical location of the study area

Table 1. Detailed soil and crop specifications for the forage maize fields.

I]\:Izrrrrlrcle Crop Type Cultiéz;-t??n}T (Illl(lil;ares) Tes;tﬂre Planting Date  Harvest Date Cap;:ci:ietl)(;1 (%) \l\élli)llt:tlli: (();/Zl)t
P Forage Maize 82.96 Silty Clay Firztf?lffy"‘de First Decade 329 21
Q  Forage Maize 14.25 Silty Clay Firztflj)lfl;"‘de F (i)rfsgc)ticbﬁe 315 2
R Forage Maize 21.22 Silty Clay Firztf?lffyade F(i)rfsggtz%ﬁe 32 20
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Figure 2- Average annual temperature and precipitation
levels in the study area (2020-2024)

2.2. WaPOR Portal

WaPOR v3 represents the third iteration of the Food
and Agriculture Organization's Water Productivity
Open-access Portal, delivering comprehensive
remotely sensed data on water productivity and
evapotranspiration across agricultural landscapes in
Africa and the Near East (FAO, 2020a). This
significantly enhanced version offers improved
methodological frameworks, expanded geographical
coverage, and multi-scale spatial resolutions:
continental  (250m), national (100m), and
subnational (30m), with temporal resolutions
ranging from dekadal to annual assessments (FAO,
2020b; Chukalla et al., 2022). The computational
infrastructure of WaPOR v3 leverages Google Earth
Engine's cloud computing capabilities to process
extensive multi-sensor satellite imagery from
platforms  including MODIS (MODO09GQ,
MODO09GA), Landsat-7/8 (ETM+, OLI), and
Sentinel-2 (MSI), applying the physically-based
ETLook algorithm for actual evapotranspiration
estimation and a Monteith light use efficiency
framework for biomass production calculations
(Blatchford et al., 2020; FAO, 2020c; Mul et al.,
2021). The platform employs a rigorous validation
protocol against flux tower measurements and field
observations, achieving improved accuracy metrics
compared to previous versions with RMSE values
below 0.8 mm/day for daily ET estimations and R?
values exceeding 0.85 for seasonal assessments
(FAO, 2022). This comprehensive database spans
from 2009 to the present, facilitating sophisticated
analyses of key biophysical indicators across various
agroecological zones and hydrological basins,
providing an essential scientific foundation for
evidence-based agricultural water management,
irrigation system efficiency evaluation, and climate
adaptation  policy  formulation (Mul and
Bastiaanssen, 2019; Chukalla et al., 2023).

In the present study, the WaPOR v3 portal was used
at the national (100m) resolution to quantify Gross
Biomass Water Productivity (GBWP) and Net

Biomass Water Productivity (NBWP), as well as to
estimate water productivity gaps.

2.3. Gross Biomass Water Productivity

(GBWP)
Gross Biomass Water Productivity (GBWP)
quantifies the relationship between biomass
production output and total water consumption over
a specified period (FAO, 2016a). This indicator,
calculated as the ratio of Total Biomass Production
(TBP) to the sum of soil evaporation, canopy
transpiration, and interception, offers critical
insights into how vegetation development affects
consumptive water use and overall water balance
within agricultural systems (Allen et al., 1998;
Steduto et al., 2007; Seijger et al., 2023). The Food
and Agriculture Organization makes GBWP data
available through the Water Productivity Open
Access Portal (WaPOR) on a seasonal basis at
different spatial resolution levels, while also
enabling user-defined temporal aggregations
through dekadal Net Primary Productivity data
(FAO, 2020). GBWP is calculated using equation

2):

TBP

GBWP = E+T+1D 2)

where, TBP represents Total Biomass Production in
kgDM/ha, and E, T, and I represent soil evaporation,
canopy transpiration, and interception in mm,
respectively. This approach enables assessment of
water use efficiency in agricultural systems by
relating  biomass accumulation to  water
consumption, supporting evidence-based decision
making for sustainable water resource management
(Molden et al., 2010; Mul and Bastiaanssen, 2019).

2.4. Net Biomass Water Productivity

(NBWP)
Net Biomass Water Productivity (NBWP) quantifies
the relationship between total biomass production
and the volume of water beneficially consumed
through canopy transpiration, excluding soil
evaporation (FAO, 2016a). Unlike Gross Biomass
Water Productivity, NBWP specifically focuses on
monitoring how effectively vegetation (particularly
crops) utilizes water for biomass development and
yield production, making it a valuable indicator for
agricultural water management assessment (Steduto
et al., 2007; Kijne et al., 2003). The Food and
Agriculture Organization provides NBWP data
through the Water Productivity Open Access Portal
(WaPOR) on a seasonal basis at spatial resolution
levels 2 and 3, with options for user-defined
temporal aggregations using dekadal input data
(FAO, 2020). NBWP is calculated using equation

3):
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NBWP = o0
T 3)

where, TBP represents Total Biomass Production in
kgDM/ha and T represents transpiration in mm. This
calculation requires input data on total biomass
production, transpiration, and phenology (when
calculated on a seasonal time-step), without
necessitating external data sources (Bastiaanssen et
al., 2012; Mul and Bastiaanssen, 2019). By isolating
transpiration from other water consumption
components, NBWP provides a more precise
measure of plant water use efficiency, supporting
targeted interventions in agricultural water
management systems.

2.5. Actual Evapotranspiration and

Interception (ETIa)

The ETIa-WPR model is based on a modified
version of the ETLook model, known as ETLook-
WaPOR (Bastiaanssen et al., 2012; Pelgrum et al.,
2012). This model employs a remote sensing-based
Penman-Monteith approach to estimate actual
evapotranspiration (ETa), which is also the method
adopted by FAO and detailed in the FAO-56
Irrigation and Drainage guidelines (Allen et al.,
1998). In ETIa-WPR, soil evaporation and plant
transpiration are estimated separately using specific
equations, while the interception component is
calculated as a function of vegetation cover, leaf area
index (LAI), and precipitation (PCP). Ultimately,
ETIa-WPR is computed as the sum of evaporation,
transpiration, and rainfall interception.

AE
- C -
A(Rn oil — G) + Pair p(esat ea)
— ! Ta,soil (4)
A+ Y(l + Ts,soil)

a,soil

AT

A(Rn,canopy) +

Pair Cp (esat B ea)

Ta,canopy (5)
A+ y (1 + rs,canopy)

Ta,canopy

A summary of all variables, their definitions, and
units used in Equations 4—7 of the ETIa-WPR model
is provided in Table 2. Evaporation (E) and
transpiration (T) are expressed in units of kg.m2.s™",
while A denotes the latent heat of vaporization
(J.kg™). Net radiation (Rn) is partitioned into soil
(Rn, soil) and canopy (Rn, canopy) components,
each measured in MJ.m2.day'. Ground heat flux is

represented by G (MJ.m2.day"). The air density
(pair) 1s given in kg.m™3, and the specific heat capacity
of air (Cp) is expressed in MJ.kg'.°C™'. The vapor
pressure deficit (VPD), calculated as the difference
between saturated and actual vapor pressures (€sat —
€a), is measured in kPa. Aerodynamic resistance (1)
and surface resistance (rs) are expressed in s.m™’,
where rs corresponds to either soil or canopy
resistance, depending on whether evaporation or
transpiration is being estimated using the Penman-
Monteith (PM) model. The slope of the saturation
vapor pressure curve with respect to air temperature
is denoted by Equation 5 (kPa-°C™), and v is the
psychrometric constant (kPa-°C™).

B d(esat) (6)
4=—0r

This approach decomposes the ETIa-WPR into its
constituent components—evaporation and
transpiration—using modified formulations of the
PM equation. These formulations distinguish net
available radiation and resistance terms based on
vegetation cover, in alignment with the ETLook
model framework (Bastiaanssen et al., 2012). A key
distinction between the ETLook-WaPOR model and
the original ETLook model lies in the source of
remote sensing data used for soil moisture
estimation. Whereas the original ETLook utilized
passive microwave data, the WaPOR approach
derives soil moisture from a model combining land
surface temperature (LST) and vegetation indices
(Wang, 2012). Additionally, the Normalized
Difference Vegetation Index (NDVI) is employed to
partition Rn into Rn, soil, and Rn, canopy, and to
support the estimation of rainfall interception,
ground heat flux, and minimum stomatal resistance.
Interception (I) refers to the fraction of rainfall that
is captured by the plant canopy and subsequently
evaporates directly from the leaf surface, thereby
reducing the energy available for transpiration. It is
expressed in mm/day and modeled as a function of
vegetation cover, leaf area index (LAI), and
precipitation (PCP). This process is critical in energy
balance assessments, as it represents a distinct
component of evapotranspiration that does not
contribute to plant water use.

1
CyogPCP )
T+ 2.

I = O'ZILIA 1-—
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Table 2. Definitions and units of variables used in the ETIa-WaPOR model (Equations 3—6).

Variable Description Unit
E Evaporation kgm™2s™
T transpiration kgm?2s!
A the latent heat of vaporization Jkg!
Rn, soil Net radiation partitioned into soil components MJm2.day™
Rn, canopy Net radiation partitioned into canopy components MJ.m2day!
G Ground heat flux MJ.m2day!
Pair air density kg.m™
Cp Specific heat capacity of air MJkgteC!
Cat saturated vapor pressures kPa
[N actual vapor pressures kPa
Ra, soil Aerodynamic resistance of soil s.m!
Ra, canopy Aerodynamic resistance of the canopy s.m!
Rs, soil Surface resistance of soil s.am™!
Rs, canopy Surface resistance of the canopy s.m!
A slope of the saturation vapor pressure curve with KPa.oC-1
respect to air temperature '
% psychrometric constant kPa.°C!
1 Rainfall interception by the canopy mm.day !
LAI Leaf Area Index -
Creg Fractional vegetation cover -
PCP Daily precipitation mm.day!

2.6. Water Productivity Gap

The water productivity gap defines the difference
between the potential or the optimum productivity of
water that can be obtained in the field under ideal
agronomic and environmental conditions and the
realized water productivity under the existing field
conditions. Production of water. (WP) is computed
as an output divided by the amount of water used,
normally expressed as actual evapotranspiration,
also known as (ETa). In this study, the water
productivity gap (WPg,) was calculated in a
systematic solicitation of actual water productivity
values (WPacwa) and ideal water improvement
standards (WPgpimai) in the form of Equation (8)
(Zheng et al., 2018):

WPgap = WPoptimal —WPitua 8)

where, WPy, is the water productivity gap,
representing the shortfall from the potential,
expressed in kg'm?; WP, is the actual water
productivity measured under existing field,
management, and climatic conditions; and WPpogential
is the optimal or potential water productivity
attainable under best management practices and
favorable environmental conditions.

Within the frame of this study, WPacwa Was obtained
by measurements of field-observed crop yields and
remotely sensed ETa and was a representation of the

current on-farm practice and specific site
environment limitations. On the other hand, WP ptimal
was derived in terms of literature-reported
benchmarks and in terms of simulation product
under  high-yielding  cultivar,  high-quality
agronomical management, non-limiting soil fertility,
and limited water supply. The discrepancy between
these two values gives an evidence-based estimate of
the unrealized water use efficiency, hence, lines up
opportunities to intervene in a specific area like
efficient irrigation scheduling, deficit irrigation
technique, or precision water management.

3. Results and Discussion
3.1. Evaluation of NBWP and GBWP
Based on WAPOR Portal Data

This analysis is based on a comparative evaluation
of Net Biomass Water Productivity (NBWP) and
Gross Biomass Water Productivity (GBWP) across
agricultural lands P, Q, and R from 2020 to 2024
(Table 3), utilizing tabulated productivity values
along with associated temperature and precipitation
data (Figure 3). The results reveal significant trends
influenced by environmental conditions and water
management practices. During this period, NBWP
increased steadily in all three fields, while GBWP
exhibited more fluctuations, likely due to variations
in rainfall, temperature, and irrigation practices
(Figure 4-5).

Table 3. Yearly values of GBWP and NBWP (kg/m?) for agricultural fields P, Q, and R during 2020-2024.

P R
Year —5EWP (Kg/m') NBWP (Kg/m') __GBWP (Kg/m®) __ NBWP (Kg/m') ___ GBWP (Kg/m’) NBWP (Kg/m’)
2020 1.97 2.42 1.84 240 247 3.15
2021 1.50 225 1.54 230 1.46 2.12
2022 229 3.07 242 335 1.28 2.89
2023 233 3.09 2.63 3.61 2.50 3.56
2024 2.07 3.03 245 333 2.71 3.55
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In Field P, NBWP rose from 2.42 to 3.03 kg/m?,
indicating a 25% increase. This improvement may be
attributed to enhanced irrigation efficiency or
reduced water losses. However, a notable drop in
GBWP in 2021 (down to 1.5 kg/m?), coinciding with

the lowest recorded rainfall (10 mm), suggests a
direct impact of drought or elevated temperatures.
By 2023, with rainfall reaching 60 mm, NBWP
improved to 3.09 kg/m?, confirming the role of
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Figure 3 — Temperature and precipitation trends: a five-year analysis (2020—-2024), with yellow highlights indicating the crop
growth period

favorable environmental conditions in enhancing
water productivity.

Field Q experienced the highest increase in NBWP,
rising from 2.40 kg/m?® in 2020 to 3.33 kg/m? in 2024
(a 39% increase). This upward trend likely reflects a
better adaptation to environmental conditions and
the adoption of advanced irrigation technologies. In
2023, under the highest recorded temperature (25°C)
and substantial rainfall (60 mm), NBWP peaked at

3.61 kg/m?, highlighting how optimal temperature
and moisture balance can maximize water use
efficiency. Nonetheless, the GBWP drop in 2021 (to
1.54 kg/m®) underscores this field’s sensitivity to
sudden climatic variations.

Field R demonstrated the greatest responsiveness to
rainfall variability. In 2021, with rainfall dropping to
10 mm, NBWP declined to 2.12 kg/m*—the lowest
value among all fields during the study period—
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highlighting the need for targeted drought
management. However, by 2023, with rainfall
improving to 60 mm, NBWP recovered sharply to
3.56 kg/m?, revealing the field's high recovery
potential under adequate water availability.
Interestingly, NBWP declined in 2022 (2.89 kg/m?)
despite moderate rainfall and temperature, possibly
due to secondary stress factors like pest outbreaks or
reduced soil quality.

Satellite imagery showing the spatial and temporal
variations of NBWP and GBWP across fields P, Q,
and R supports the conducted analyses (Figures 6-7).
Figure 6 illustrates the spatial and temporal
dynamics of GBWP, ranging from 0.7 to 3.1 kg/m?,
while Figure 7 depicts NBWP variations ranging
from 1.5 to 6.7 kg/m?>. These figures highlight field-
specific and inter-annual differences in biomass
water productivity, complementing the
meteorological data shown in Figure 3.
Temperature and precipitation data presented in
Figure 3 were obtained from the Parsabad-Moghan
Meteorological Station, with temperature in °C and
precipitation in mm, providing the climatic context
for analyzing the trends in GBWP and NBWP.

The gap between NBWP and GBWP also reveals
insights into hidden water losses. For instance, in
Field Q during 2023, the notable difference between
GBWP (2.63) and NBWP (3.61) may indicate
reduced evaporation losses or improved water
retention due to efficient drainage systems. In
contrast, Field P in 2024 shows a narrower gap
(GBWP = 2.07, NBWP = 3.03), possibly reflecting
new limiting factors such as soil salinity or thermal
stress.

The year 2021 emerges as a critical turning point
across all fields, where decreased rainfall and
possibly higher temperatures led to simultaneous
drops in both NBWP and GBWP. Field R was most
affected, with NBWP falling to its lowest level (2.12
kg/m?), emphasizing the need for robust drought
mitigation  strategies.  Conversely, 2023—
characterized by high rainfall and optimal
temperatures—marked a peak in water productivity
for Fields Q and R, suggesting that environmental
balance is key to maximizing efficiency.

Consistent with the findings reported by Parchami-
Araghi et al. (2022), who analyzed physical water
productivity (WPI) for soybean in the downstream
sectors of the Moghan irrigation network and
reported average values around 0.42 kg/m?. Their
results confirm that improved irrigation scheduling
and reduced water losses significantly enhance water
use efficiency under semi-arid conditions similar to
the current study area. In a recent assessment by
Akhavan Giglou et al. (2023), the physical and

economic water productivity of major crops such as
silage maize, cotton, and tomato was evaluated
across the Moghan plain. They concluded that
biomass water productivity was highly sensitive to
inter-annual climatic variability and management
decisions, which aligns with the GBWP fluctuations
observed in our Fields P, Q, and R. Moreover,
Farahza et al. (2020) demonstrated that the adoption
of modern irrigation systems (e.g., sprinkler and
drip) in the Moghan region led to simultaneous
improvements in both physical and economic water
productivity. These findings support the upward
NBWP trend observed in Field Q, likely due to the
implementation of advanced water management
technologies during the study period.
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Figure 7- Spatial and temporal dynamics of NBWP in agricultural fields P, Q, and R (2020-2024)

3.2. Water Productivity Gap

A comparative analysis of Gross and Net Biomass
Water Productivity (GBWP and NBWP) across the
three agricultural centers (P, Q, and R), based on
both ground-based measurements and WaPOR
estimations, reveals consistent and significant
discrepancies (Tables 4, 5, and 6). In all years from
2020 to 2024, GBWP values calculated from field

data were consistently higher than those estimated
by WaPOR. For instance, in 2024, the measured
GBWP in field Q was 5.49 kg/m?, while the WaPOR
estimate for the same field and year was only
2.45 kg/m? (Table 5). A similar pattern was observed
in NBWP, where field-based values ranged between
4.17 and 5.71 kg/m3, while WaPOR estimations
remained between 2.12 and 3.61 kg/m? (Table 6).
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Table 4. Field-based irrigation and yield parameters for maize cultivation in selected agricultural centers

Farm Name Irrigation Water Depth (mm) Covered Area (ha) Maize Yield (Kg) Previous Crop Before Maize
P 552.41 82.95 2488726.32 Wheat
Q 234.69 14.24 480797.978 Canola
R 268.32 22.89 384638.382 Wheat

Table 5. Comparison of measured and WaPOR portal GBWP values for fields P, Q, and R (kg/m?) from 2020 to 2024

YEAR P (Kg/m®) Q (Kg/m®) R (Kg/m®)
Measured WaPOR Portal Measured WaPOR Portal Measured WaPOR Portal
2020 4.86 1.97 5.47 1.84 438 2.47
2021 4.62 1.50 5.20 1.54 4.16 1.46
2022 4.57 2.29 5.14 2.42 4.11 1.28
2023 435 233 4.89 2.63 391 2.50
2024 4.88 2.07 5.49 245 439 2.71

Table 6. Comparison of measured and WaPOR portal NBWP and WP Gap values for fields P, Q, and R (kg/m?) from 2020 to 2024

P (Kg/m®) Q (Kg/m®) R (Kg/m®)
YEAR NBWP WP Gap NBWP WP Gap NBWP WP Gap
Measured WaPOR Measured WaPOR | Measured WaPOR Measured WaPOR | Measured WaPOR Measured WaPOR
2020 5.02 2.42 4.98 7.58 5.65 24 435 7.60 4.52 3.15 5.48 6.85
2021 4.63 2.25 5.37 7.75 5.21 23 4.79 7.70 4.17 2.12 5.83 7.88
2022 4.62 3.07 5.38 6.93 5.19 3.35 4.81 6.65 4.15 2.89 5.85 7.11
2023 4.81 3.09 5.19 6.91 541 3.61 4.59 6.39 433 3.56 5.67 6.44
2024 5.13 3.03 4.87 6.97 5.71 3.33 4.29 6.67 4.62 3.55 5.38 6.45
Mean 4.84 2.77 5.16 7.23 5.43 3.00 4.57 7.00 4.36 3.05 5.64 6.95
To calculate the water productivity gap (Equation 7), WaPOR relies on medium-resolution satellite
first, the potential water productivity was calculated. imagery and bio-physical modeling, which

According to the field data, the highest yield of 70
ton/ha was recorded with the T-type irrigation
system, with an efficiency of 90% and a water
consumption of 7000 m’/ha. Therefore, in the
potential case, the water productivity value was
obtained as 10 kg/m’. Considering the potential
productivity, the productivity gap was calculated.
The results showed that the water productivity gap
for the measured data in the P, Q and R farms was
5.16, 4.57 and 5.64 kg/m?, respectively, and for the
data extracted from the WaPOR Portal for the P, Q
and R farms, the values were 7.23, 7 and 6.95 kg/m?,
respectively (Table 6) .These discrepancies stem
from fundamental differences in data sources and
methodological approaches. Field-based
measurements rely on direct records of irrigation
water depth, cultivated area, and actual harvested
yield (Table 4), thereby reflecting localized
agronomic management such as crop rotation,
irrigation frequency, and fertilization practices. For
example, field Q, which consistently showed the
highest water productivity, followed a canola—maize
rotation—a practice widely recognized to improve
soil health and enhance nutrient and water uptake.
Such agronomic details are rarely captured in remote
sensing-based models like WaPOR. Conversely,

inherently apply spatial and temporal averaging.
While this ensures regional consistency and enables
large-scale assessments, it often overlooks farm-
level management heterogeneity, leading to an
underestimation of actual water productivity. The
discrepancy may also be exacerbated by differences
in evapotranspiration estimation techniques, the use
of generalized crop coefficients, and the static nature
of some WaPOR input layers. Notably, temporal
trends of field-based GBWP and NBWP values
remained relatively stable across the five years,
while WaPOR-derived values exhibited a more
variable and increasing trend. This divergence could
result from annual updates in WaPOR algorithms or
climatic =~ changes influencing satellite-based
evapotranspiration estimates. However, considering
that local agronomic practices remained largely
consistent during the study period, field-based data
likely provide a more reliable representation of true
productivity performance.

The observed productivity gap is not unique to this
study. Recent investigations support similar
findings. For example, Blatchford et al. (2020)
emphasized the limitations of coarse-resolution
remote sensing in accurately capturing water
productivity at the plot scale. Additionally, Patil et

al. (2015) highlighted the importance of integrating field observations with Earth observation data to reduce
uncertainty in productivity assessments across diverse agroecosystems.

3.3. Assessment of Portal-Based
Estimates versus Observed Field
Data

In plot P, a uniform irrigation depth of 55.24 mm per

10-day period appears adequate and well-aligned
with crop water requirements during early

development (vegetative and rapid leaf expansion
stages, mid-June to early July). This is supported by
high ETIa (41.97 mm) and Water Stress Coefficients
(WSC) values (>1.5), which resulted in a favorable
GBWP of 1.97kg/m* in 2020. However, as the
season progressed into July—August (tasseling and
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ear formation), crop water demand gradually
declined, yet the irrigation rate remained unchanged.
With evapotranspiration (ETc) slightly dropping and
day temperatures rising (above 24.5°C), this

resulted in marginal over-irrigation during late
reproductive  stages, possibly increasing non-
beneficial losses and contributing to a GBWP drop
in 2021 to 1.50 kg/m? despite consistent irrigation.

2020

2021

oy
B
z
=
E]
g

F P PP P P P P E
W » U VRN A G UM R
FTF T T T T &

o N AN 3 § F & » &
ETC ETla (P) —— ETIa (Q) ETa (R) ===+ DP) ~---- D(Q) === D®)

2024

80

70
60
850 ---------------------------- =7
3
= 40
ER L1
£y FF°F= = = ooIs

—~—

10

o [~ |

v B B D B B B

v v 4\ 3\ Q7 9

N & & & & & &

0 0¥ W A v 4 v

o ™ N N N o o
A DR S

T ETIn (P) —— ETIa (Q) ETh (R) ====- D) - D(Q) ===~ D®)

Figure 8 — Annual comparison of measured ETc, portal-based ETIa, and decadal irrigation water depth across fields P, Q, and R
(2020-2025)



187. Azizi Mobaser et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 174-190, 2025

In contrast, plot Q received only 23.47 mm of
irrigation per 10 days—sufficient for early growth
but inadequate during mid-to-late season, especially
during the reproductive phase when ETc surpassed
50 mm. This under-irrigation, combined with
elevated temperatures (~25 °C in July 2021), likely
limited photosynthetic efficiency and biomass
accumulation. As a result, ETIa dropped below
20 mm in several decades, and GBWP declined to
1.54 kg/m® in 2021, while NBWP followed a slower
recovery trend despite improved weather conditions
in subsequent years. Plot R, irrigated with 26.83 mm
per 10-day period, exhibited similar constraints.
While this amount may have met early-season
requirements, it failed to match peak ETc demands
during tasseling and grain-filling stages (July—
August), which coincided with hot and dry weather.
Consequently, actual crop water uptake (ETIa)
remained suboptimal, particularly in 2021, where
NBWP dropped to its minimum (2.12 kg/m?),
indicating acute water stress. Recovery in GBWP
and NBWP was observed in 2023, likely due to
enhanced rainfall (60mm) and moderate
temperatures (~23 °C), which helped mitigate
irrigation shortfalls.

A key observation is that none of the plots
implemented  stage-specific  irrigation.  Fixed
irrigation rates across all decades ignored the bell-
shaped curve of crop water demand, leading to
inefficiencies—over-irrigation during physiological
maturity (e.g., September) and under-irrigation
during peak demand periods (mid-season). The
absence of flexible scheduling likely suppressed
yield potential and water productivity, especially
under heat stress conditions where crops require
tightly controlled moisture regimes to maintain
stomatal function and assimilate production.

Conclusion

This study conducted a comprehensive comparative
analysis of Net and Gross Biomass Water
Productivity (NBWP and GBWP) across three
agricultural fields (P, Q, and R) over five growing
seasons (2020-2024), incorporating both ground-
based measurements and WaPOR remote sensing
estimates. The findings reveal clear inter-annual and
spatial variability in water productivity, closely
influenced by irrigation scheduling, rainfall patterns,
temperature fluctuations, and crop management
practices such as rotation. While NBWP showed a
consistent upward trend in all fields—especially in
Field Q, where advanced irrigation techniques and a
canola—maize rotation contributed to sustained
gains—GBWP was more sensitive to climatic
extremes and non-optimized water use. The year
2021 emerged as a critical turning point marked by
simultaneous declines in both GBWP and NBWP
due to limited rainfall and elevated temperatures.
Conversely, 2023 presented optimal climatic

conditions, leading to productivity recovery,
particularly in Fields Q and R. The comparison
between WaPOR estimates and field-derived data
highlighted a significant water productivity gap,
with satellite-derived GBWP and NBWP values
consistently underestimating actual productivity by
up to 50% or more. This discrepancy is primarily
attributed to the coarse spatial resolution, static
model assumptions, and inability of WaPOR to
capture localized agronomic nuances, such as stage-
specific irrigation or soil fertility variations.
Nonetheless, WaPOR’s consistent structure offers
valuable insights for regional-scale assessments and
long-term monitoring. Moreover, the analysis of
decade-wise irrigation depth emphasized the
limitations of uniform irrigation scheduling. Fixed
irrigation rates failed to meet dynamic crop water
requirements, leading to either over-irrigation in
late-season stages or water stress during peak
demand phases (tasseling and grain filling),
especially under high-temperature conditions. These
mismatches likely suppressed both biomass
production and water use efficiency. In conclusion,
this study underlines the critical need for integrated
irrigation scheduling, climate-adaptive management,
and field-calibrated remote sensing approaches to
bridge the productivity gap and enhance sustainable
water use. These should be implemented in a
practical manner based on smart irrigation (e.g.,
based on soil moisture sensors, variable rate
irrigation, automated delivery systems), precision
agriculture tools (e.g., various UAV-based
capabilities to monitor crops and implement site-
specific nutrient applications), and stage-based plans
of allocating water. Adoption of these measures can
improve the accuracy of water productivity
assessments, increase resource-use efficiency, and
strengthen the resilience of agroecosystems in semi-
arid regions such as Moghan.
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