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Abstract 
Water productivity is essential for sustainable agriculture, especially in semi-arid regions with limited water resources. In the 

Moghan Plain during 2020–2024, this study evaluates Net Biomass Water Productivity (NBWP) and Gross Biomass Water 

Productivity (GBWP) in three agricultural fields (P, Q, and R) cultivating silage maize under center pivot irrigation from 2020 

to 2024. Ground measurements of irrigation depth, crop yield, and evapotranspiration, combined with temperature and 

precipitation data, were analyzed to understand temporal variations and the impact of environmental and management factors.  

Results showed that NBWP increased from 2.42 to 3.03 kg/m³ in Field P, 2.40 to 3.33 kg/m³ in Field Q, and 2.12 to 3.56 kg/m³ 

in Field R, with Field Q achieving the highest gain (39%). GBWP fluctuated more significantly, ranging from 1.5 to 2.63 kg/m³, 

with the lowest values in 2021 corresponding to drought conditions and high temperatures. Comparison between field data and 

WaPOR satellite-based estimates revealed systematic underestimation by the portal, with GBWP and NBWP values 

underestimated by 40–50%, mainly due to differences in spatial resolution, input data quality, and algorithmic assumptions for 

evapotranspiration estimation, as well as its inability to capture localized agronomic practices such as crop rotation and 

irrigation scheduling. The study also identified uniform irrigation rates applied throughout the crop cycle, ignoring the dynamic 

water demands during different growth stages. This led to over-irrigation during maturity and under-irrigation during critical 

reproductive phases, exacerbating water stress under high temperatures.  The findings emphasize the necessity of integrating 

precise field measurements with remote sensing data for accurate water productivity assessment. Implementing stage-specific 

irrigation management can optimize water use efficiency and maintain crop biomass production under varying climatic 

conditions. This research provides valuable insights for improving irrigation strategies and water resource management, 

contributing to agricultural resilience in water-scarce semi-arid environments facing climate variability. 
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1. Introduction 
Water scarcity is recognized as one of the 

fundamental challenges of the 21st century. 

According to the Food and Agriculture Organization 

of the United Nations (FAO), agriculture is both a 

major cause and a victim of water scarcity, 

accounting for approximately 70% of global water 

withdrawals (Hoekstra and Mekonnen, 2012; FAO, 

2020). Climate change, population growth, and 

rising water demands across various sectors have 

intensified competition for limited water resources 

while also driving an increase in food demand by 

more than 40% (Feng et al., 2015). Consequently, 

adopting more efficient irrigation practices has 

become essential (Hanjra and Qureshi, 2010; 

Jägermeyr et al., 2016). Water scarcity impacts are 

especially severe in arid and semi-arid regions, 

where limited precipitation and high 

evapotranspiration rates exacerbate water stress 

(UNEP, 2021). These regions face intensified 

challenges in balancing water availability with 

agricultural and ecological demands, making 

efficient water management critical (World Bank, 

2022).The concept of Water Productivity (WP) 

serves as a metric for evaluating the performance of 

both irrigated and rainfed agriculture. It is defined as 

the amount of biomass produced per unit of water 

consumed, which includes soil water available in the 

root zone between planting and harvest, in-season 

rainfall, and applied irrigation (Angus and Van, 

2001). WP is recognized as a crucial indicator for 

evaluating irrigation performance and informing 

water resource management decisions (Molden et 

al., 2010; van Halsema and Vincent, 2012). 

Investigating water productivity provides essential 

insights into the efficiency of water utilization in 

agricultural production. This analysis facilitates the 

identification of opportunities for enhancing 

performance and optimizing resource management 

(Zwart and Bastiaanssen, 2004; Steduto et al., 2012). 

The accurate assessment of WP necessitates the 

availability of reliable data concerning both crop 

yield and water consumption; however, obtaining 

such data at a large scale often presents significant 

challenges (Karimi et al., 2013; Blatchford et al., 

2020). To improve water productivity in agriculture, 

two primary strategies are typically employed: the 

initiation of new irrigation projects; and the 

optimization of existing irrigation systems through 

comprehensive performance evaluation (Torres-

Cobo, 2024). Center pivot irrigation systems are 

widely used due to their uniform water distribution, 

automation, and higher efficiency compared to 

surface irrigation methods (O'Brien et al., 2010). 

Since their introduction in the 1950s, they have 

advanced through innovations such as variable-rate 

irrigation, precision water application, and 

integration with decision-support tools (McCarthy et 

al., 2014; Yari et al., 2017).  However, actual field 

performance often falls short of its theoretical 

potential. This gap is attributed to factors such as 

suboptimal system design, operational 

inefficiencies, environmental variability, and poor 

management (Lamm et al., 2012; Trout and 

DeJonge, 2017).  Traditional methods for assessing 

irrigation performance—based on field 

measurements—are time-consuming, expensive, 

and spatially limited (Burt et al., 1997; Perry, 2011). 

As a result, there has been growing interest in remote 

sensing technologies for evaluating irrigation 

performance over large areas and extended periods 

(Bastiaanssen et al., 2007; Irmak et al., 2011). 

Recent advancements in remote sensing—

particularly through models like SEBAL and 

METRIC—have greatly enhanced agricultural water 

management by enabling large-scale evaluation of 

water productivity using earth observation data. 

These methods offer high spatial and temporal 

resolution, allowing for detailed analysis across 

extensive agricultural landscapes (Al-Bakri et al., 

2022). To support improved monitoring, the Food 

and Agriculture Organization (FAO) launched the 

Water Productivity Open-access Portal (WaPOR), 

which provides satellite-based data on key water 

balance components such as actual 

evapotranspiration and biomass production (FAO, 

2018). By minimizing the need for field 

measurements, WaPOR facilitates cost-effective 

calculation of water productivity indicators 

(Chukalla et al., 2020; Blatchford et al., 2020). The 

portal offers data at three spatial resolutions—250 m, 

100 m, and 30 m—to meet varying analytical needs 

(FAO, 2020). In a study conducted by Platonov et al. 

(2008), remote sensing technologies were utilized to 

assess water productivity in the Syr Darya Basin 

located in Central Asia. The results revealed that 

water productivity in this region ranged from 0 to 0.9 

kg/m³, with 55% of the area demonstrating water 

productivity levels below 0.30 kg/m³. The authors 

underscored the importance of enhanced water 

resource management as a means to improve both 

water productivity and agricultural yields. Patil et al. 

(2014) conducted a comprehensive investigation 

into agricultural water productivity within desert 

farming systems in Saudi Arabia, utilizing remote 

sensing products. Their research employed the 

SEBAL model to estimate evapotranspiration and 

the NDVI index to assess crop yield. The findings 

indicated that water productivity for various crops 

ranged from 0.38 to 2.01 kg/m³, showing moderate 

agreement between satellite-based estimates and 

field measurements. Franco et al. (2016) conducted 

an estimation of water productivity (WP) within 

watershed areas utilizing remote sensing data, the 

Monteith and SAFER models, as well as Landsat 8 

imagery. Their study underscored that water 

productivity is influenced by varying spatial and 

temporal conditions and illustrated the effectiveness 

of remote sensing in accurately capturing these 
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variations. The research conducted by Choudhury 

and Bhattacharya (2018) employed Moderate 

Resolution Imaging Spectroradiometer (MODIS) 

satellite data to assess agricultural water productivity 

in India. This study utilized Gross Primary 

Production (GPP) and actual evapotranspiration 

(ETa) data to produce comprehensive maps 

illustrating water productivity and crop 

evapotranspiration levels across India from 2007 to 

2012. The findings revealed that Agricultural Water 

Productivity (AWP) and Rainfall Water Productivity 

(RWP) exhibited values ranging from 1.10 to 1.30 

kg/m³ and 0.94 to 1.00 kg/m³, respectively. More 

recently, Chiraz et al. (2022) demonstrated that 

water productivity in olive orchards varied 

significantly based on the cultivation system 

employed. Furthermore, remote sensing emerged as 

an effective methodology for assessing soil moisture 

and managing water productivity, thereby offering 

substantial potential for enhanced decision-making 

in agricultural water management. A recent study by 

Fakhar and Kaviani (2024) evaluated the WaPOR 

model across 16 provinces in Iran’s four main 

climatic zones by comparing 10-day 

evapotranspiration estimates from WaPOR and the 

FAO-56 method. The highest agreement was 

observed in semi-arid regions (R² = 0.95, RMSE = 

0.43). The analysis showed notable ET variations in 

the Caspian Sea and Zagros foothill areas between 

2015 and 2022. Additionally, net blue water 

productivity in rainfed lands was strongly linked to 

precipitation. The results support WaPOR’s 

reliability in estimating evapotranspiration and 

managing agricultural water use across diverse 

Iranian climates.   Similarly, Safi et al. (2024) 

assessed SDG 6.4.1 in Lebanon, showing that 

WaPOR-based remote sensing data can effectively 

estimate agricultural water productivity by using 

actual evapotranspiration instead of water 

withdrawals. Despite differences in absolute 

values—mainly due to inconsistencies between 

WaPOR and AQUASTAT irrigated area data—the 

trends were consistent. WaPOR’s focus on actually 

irrigated areas makes it a valuable tool for reliable 

SDG monitoring in agriculture. In another study, 

Veysi et al. (2024) utilized data from the FAO 

WaPOR portal to assess crop water productivity in a 

semi-arid basin in Iran. The findings revealed that 

conventional indicators such as GWP and NWP may 

not accurately reflect water productivity, 

highlighting the necessity of developing a 

dimensionless index for more precise identification 

of low-productivity areas and improved water 

resource management. Singh et al. (2024) employed 

the SETMI model in conjunction with remote 

sensing data to assess regional-scale water 

productivity for wheat crops in a semi-arid region of 

India. The results indicated considerable spatial and 

temporal variation in water productivity for wheat, 

with actual evapotranspiration estimates ranging 

from 101 mm to 325 mm. This methodology 

highlights the effectiveness of remote sensing in 

delivering reliable assessments of water productivity 

dynamics. Most recently, Mukandiwa et al. (2025) 

assessed crop water productivity (CWP) in the 

Chisumbanje sugarcane and Ratelshoek wheat farms 

of Zimbabwe was assessed using data from the 

WaPOR portal and the SEBS model. The results 

showed that actual evapotranspiration (ETa) reached 

9 mm/day in the summer and 3.98 mm/day in the 

winter. Additionally, crop water productivity for 

wheat ranged from 2.4–3.0 kg/m³, while for 

sugarcane it ranged from 1.2–1.6 kg/m³. 

The Moghan Plain is one of the most important 

agricultural areas of Iran since the northwest of Iran 

is characterized by strategic crops of silage maize, 

wheat, and sugar beet. The region has good soils and 

a fairly level topography, making mechanized 

agriculture possible and modern methods of 

irrigation, especially center pivot irrigation. 

Nonetheless, notwithstanding these benefits, the 

region is severely affected by changes in semi-arid 

weather, which is characterized by both its low 

amounts of rainfall of unequal distribution, high 

evapotranspiration levels, and a rising rate of 

drought occurrences. With these climatic factors and 

unsustainable water resource management policies--

including excessive extraction of groundwater and 

standard irrigation timings that fail to factor in the 

varying needs of different crops-scarce water 

resource management issues come to the fore, 

jeopardizing the sustainability of long-term 

agricultural practices. These challenges make the 

Moghan Plain an ideal case study for evaluating and 

improving irrigation water productivity (Nazari et 

al., 2018; Choopan and Emami, 2020; Akhavan et 

al., 2021; Abdiaghdam Laromi et al., 2024). 

In this context, the current research endeavors to 

estimate the water productivity of center pivot 

irrigation systems utilizing data sourced from the 

WaPOR portal within the Moghan Plain region. 

Furthermore, the study aims to evaluate the existing 

water productivity gap in the designated study area. 

 

2. Materials and Methods 

2.1. Study Area 
The study area is geographically located within the 

Moghan Irrigation Scheme in Parsabad County, 

Ardabil Province, where forage maize is the primary 

cultivated crop (Figure 1). Due to its geographical 

position and access to surface water resources, this 

region is organized as one of Iran's most important 

agricultural and livestock production zones, playing 

a significant role in national crop production, 

particularly maize. It is among the largest surface-

water-based irrigation projects in the country. The 

total area covered by the Moghan Irrigation Scheme 

is approximately 40,000 hectares. This scheme is 

situated between the Aras and Balharoud rivers, and 
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its water resources are utilized to irrigate agricultural 

lands. Based on the De Martonne aridity index 

(Equation 1), calculated using long-term average 

annual precipitation (269.13 mm) and mean annual 

temperature (15.92 °C), the climate of the region is 

classified as semi-arid, consistent with previous 

studies (Dinpashoh and Allahverdipour, 2025). 

Climatic conditions in the region are characterized 

by notable variability in temperature and 

precipitation, with annual averages illustrated in 

Figure 2 for the period 2020–2024. Detailed soil and 

crop characteristics, including soil texture, cultivated 

area, field capacity, and wilting point moisture 

content for forage maize fields, are provided in Table 

1. 

I =  
P

( T +  10)
 

 

(1) 

Where: 

I = Aridity Index (De Martonne); 

P = Mean annual precipitation (mm); 

T = Mean annual temperature (°C). 

 

 

 
Figure 1- Geographical location of the study area 

 
Table 1. Detailed soil and crop specifications for the forage maize fields. 

Farm 

Name 
Crop Type 

Area Under 

Cultivation (hectares) 

Soil 

Texture 
Planting Date Harvest Date 

Field 

Capacity (%) 

Wilting Point 

Moisture (%) 

P Forage Maize 82.96 Silty Clay 
First Decade 

of July 
First Decade 
of October 

32.9 21 

Q Forage Maize 14.25 Silty Clay 
First Decade 

of July 

First Decade 

of October 
31.5 22 

R Forage Maize 21.22 Silty Clay 
First Decade 

of July 

First Decade 

of October 
32 20 
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Figure 2- Average annual temperature and precipitation 

levels in the study area (2020-2024) 
 

2.2. WaPOR Portal 
WaPOR v3 represents the third iteration of the Food 

and Agriculture Organization's Water Productivity 

Open-access Portal, delivering comprehensive 

remotely sensed data on water productivity and 

evapotranspiration across agricultural landscapes in 

Africa and the Near East (FAO, 2020a). This 

significantly enhanced version offers improved 

methodological frameworks, expanded geographical 

coverage, and multi-scale spatial resolutions: 

continental (250m), national (100m), and 

subnational (30m), with temporal resolutions 

ranging from dekadal to annual assessments (FAO, 

2020b; Chukalla et al., 2022). The computational 

infrastructure of WaPOR v3 leverages Google Earth 

Engine's cloud computing capabilities to process 

extensive multi-sensor satellite imagery from 

platforms including MODIS (MOD09GQ, 

MOD09GA), Landsat-7/8 (ETM+, OLI), and 

Sentinel-2 (MSI), applying the physically-based 

ETLook algorithm for actual evapotranspiration 

estimation and a Monteith light use efficiency 

framework for biomass production calculations 

(Blatchford et al., 2020; FAO, 2020c; Mul et al., 

2021). The platform employs a rigorous validation 

protocol against flux tower measurements and field 

observations, achieving improved accuracy metrics 

compared to previous versions with RMSE values 

below 0.8 mm/day for daily ET estimations and R² 

values exceeding 0.85 for seasonal assessments 

(FAO, 2022). This comprehensive database spans 

from 2009 to the present, facilitating sophisticated 

analyses of key biophysical indicators across various 

agroecological zones and hydrological basins, 

providing an essential scientific foundation for 

evidence-based agricultural water management, 

irrigation system efficiency evaluation, and climate 

adaptation policy formulation (Mul and 

Bastiaanssen, 2019; Chukalla et al., 2023). 

In the present study, the WaPOR v3 portal was used 

at the national (100m) resolution to quantify Gross 

Biomass Water Productivity (GBWP) and Net 

Biomass Water Productivity (NBWP), as well as to 

estimate water productivity gaps. 

 

2.3. Gross Biomass Water Productivity 

(GBWP) 
Gross Biomass Water Productivity (GBWP) 

quantifies the relationship between biomass 

production output and total water consumption over 

a specified period (FAO, 2016a). This indicator, 

calculated as the ratio of Total Biomass Production 

(TBP) to the sum of soil evaporation, canopy 

transpiration, and interception, offers critical 

insights into how vegetation development affects 

consumptive water use and overall water balance 

within agricultural systems (Allen et al., 1998; 

Steduto et al., 2007; Seijger et al., 2023). The Food 

and Agriculture Organization makes GBWP data 

available through the Water Productivity Open 

Access Portal (WaPOR) on a seasonal basis at 

different spatial resolution levels, while also 

enabling user-defined temporal aggregations 

through dekadal Net Primary Productivity data 

(FAO, 2020). GBWP is calculated using equation 

(2):  

 

GBWP =  
TBP

(E +  T +  I)
 

 

(2) 

where, TBP represents Total Biomass Production in 

kgDM/ha, and E, T, and I represent soil evaporation, 

canopy transpiration, and interception in mm, 

respectively. This approach enables assessment of 

water use efficiency in agricultural systems by 

relating biomass accumulation to water 

consumption, supporting evidence-based decision 

making for sustainable water resource management 

(Molden et al., 2010; Mul and Bastiaanssen, 2019). 

 

2.4. Net Biomass Water Productivity 

(NBWP) 
Net Biomass Water Productivity (NBWP) quantifies 

the relationship between total biomass production 

and the volume of water beneficially consumed 

through canopy transpiration, excluding soil 

evaporation (FAO, 2016a). Unlike Gross Biomass 

Water Productivity, NBWP specifically focuses on 

monitoring how effectively vegetation (particularly 

crops) utilizes water for biomass development and 

yield production, making it a valuable indicator for 

agricultural water management assessment (Steduto 

et al., 2007; Kijne et al., 2003). The Food and 

Agriculture Organization provides NBWP data 

through the Water Productivity Open Access Portal 

(WaPOR) on a seasonal basis at spatial resolution 

levels 2 and 3, with options for user-defined 

temporal aggregations using dekadal input data 

(FAO, 2020). NBWP is calculated using equation 

(3): 
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NBWP =  
TBP

 T 
 

 
(3) 

where, TBP represents Total Biomass Production in 

kgDM/ha and T represents transpiration in mm. This 

calculation requires input data on total biomass 

production, transpiration, and phenology (when 

calculated on a seasonal time-step), without 

necessitating external data sources (Bastiaanssen et 

al., 2012; Mul and Bastiaanssen, 2019). By isolating 

transpiration from other water consumption 

components, NBWP provides a more precise 

measure of plant water use efficiency, supporting 

targeted interventions in agricultural water 

management systems. 

 

2.5. Actual Evapotranspiration and 

Interception (ETIa) 
The ETIa-WPR model is based on a modified 

version of the ETLook model, known as ETLook-

WaPOR (Bastiaanssen et al., 2012; Pelgrum et al., 

2012). This model employs a remote sensing-based 

Penman-Monteith approach to estimate actual 

evapotranspiration (ETa), which is also the method 

adopted by FAO and detailed in the FAO-56 

Irrigation and Drainage guidelines (Allen et al., 

1998). In ETIa-WPR, soil evaporation and plant 

transpiration are estimated separately using specific 

equations, while the interception component is 

calculated as a function of vegetation cover, leaf area 

index (LAI), and precipitation (PCP). Ultimately, 

ETIa-WPR is computed as the sum of evaporation, 

transpiration, and rainfall interception. 

 

𝜆𝐸

=

Δ(𝑅𝑛,𝑠𝑜𝑖𝑙 − 𝐺) +
𝜌𝑎𝑖𝑟𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒𝑎)

𝑟𝑎,𝑠𝑜𝑖𝑙

Δ + γ (1 +
𝑟𝑠,𝑠𝑜𝑖𝑙

𝑟𝑎,𝑠𝑜𝑖𝑙
)

 

 

(4) 

𝜆𝑇

=

Δ(𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦) +
𝜌𝑎𝑖𝑟𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒𝑎)

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦

Δ + γ (1 +
𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦
)

 
(5) 

 
A summary of all variables, their definitions, and 

units used in Equations 4–7 of the ETIa-WPR model 

is provided in Table 2. Evaporation (E) and 

transpiration (T) are expressed in units of kg.m⁻².s⁻¹, 

while λ denotes the latent heat of vaporization 

(J.kg⁻¹). Net radiation (Rn) is partitioned into soil 

(Rn, soil) and canopy (Rn, canopy) components, 

each measured in MJ.m⁻².day⁻¹. Ground heat flux is 

represented by G (MJ.m⁻².day⁻¹). The air density 

(ρair) is given in kg.m⁻³, and the specific heat capacity 

of air (CP) is expressed in MJ.kg⁻¹.°C⁻¹. The vapor 

pressure deficit (VPD), calculated as the difference 

between saturated and actual vapor pressures (esat − 

ea), is measured in kPa. Aerodynamic resistance (ra) 

and surface resistance (rs) are expressed in s.m⁻¹, 

where rs corresponds to either soil or canopy 

resistance, depending on whether evaporation or 

transpiration is being estimated using the Penman-

Monteith (PM) model. The slope of the saturation 

vapor pressure curve with respect to air temperature 

is denoted by Equation 5 (kPa·°C⁻¹), and γ is the 

psychrometric constant (kPa·°C⁻¹). 

 

𝛥 =
𝑑(𝑒𝑠𝑎𝑡)

𝑑𝑇
 

(6) 

 

This approach decomposes the ETIa-WPR into its 

constituent components—evaporation and 

transpiration—using modified formulations of the 

PM equation. These formulations distinguish net 

available radiation and resistance terms based on 

vegetation cover, in alignment with the ETLook 

model framework (Bastiaanssen et al., 2012). A key 

distinction between the ETLook-WaPOR model and 

the original ETLook model lies in the source of 

remote sensing data used for soil moisture 

estimation. Whereas the original ETLook utilized 

passive microwave data, the WaPOR approach 

derives soil moisture from a model combining land 

surface temperature (LST) and vegetation indices 

(Wang, 2012). Additionally, the Normalized 

Difference Vegetation Index (NDVI) is employed to 

partition Rn into Rn, soil, and Rn, canopy, and to 

support the estimation of rainfall interception, 

ground heat flux, and minimum stomatal resistance. 
Interception (I) refers to the fraction of rainfall that 

is captured by the plant canopy and subsequently 

evaporates directly from the leaf surface, thereby 

reducing the energy available for transpiration. It is 

expressed in mm/day and modeled as a function of 

vegetation cover, leaf area index (LAI), and 

precipitation (PCP). This process is critical in energy 

balance assessments, as it represents a distinct 

component of evapotranspiration that does not 

contribute to plant water use. 

 

I = 0.2𝐼𝐿𝐼𝐴 (1 −
1

1 +
𝐶𝑣𝑒𝑔𝑃𝐶𝑃

0.2𝐼𝐿𝐼𝐴

) 

 

(7) 
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Table 2. Definitions and units of variables used in the ETIa-WaPOR model (Equations 3–6). 

Variable Description Unit 

E Evaporation kg.m⁻².s⁻¹ 

T transpiration kg.m⁻².s⁻¹ 
λ the latent heat of vaporization J.kg⁻¹ 

Rn, soil Net radiation partitioned into soil components MJ.m⁻².day⁻¹ 

Rn, canopy Net radiation partitioned into canopy components MJ.m⁻².day⁻¹ 
G Ground heat flux MJ.m⁻².day⁻¹ 

ρair air density kg.m⁻³ 

CP Specific heat capacity of air MJ.kg⁻¹.°C⁻¹ 
esat saturated vapor pressures kPa 

ea actual vapor pressures kPa 

Ra, soil Aerodynamic resistance of soil s.m⁻¹ 
Ra, canopy Aerodynamic resistance of the canopy s.m⁻¹ 

Rs, soil Surface resistance of soil s.m⁻¹ 

Rs, canopy Surface resistance of the canopy s.m⁻¹ 

Δ 
slope of the saturation vapor pressure curve with 

respect to air temperature 
kPa.°C⁻¹ 

γ psychrometric constant kPa.°C⁻¹ 
I Rainfall interception by the canopy mm.day⁻¹ 

LAI Leaf Area Index - 

Cveg  Fractional vegetation cover - 
PCP Daily precipitation mm.day⁻¹ 

2.6. Water Productivity Gap 
The water productivity gap defines the difference 

between the potential or the optimum productivity of 

water that can be obtained in the field under ideal 

agronomic and environmental conditions and the 

realized water productivity under the existing field 

conditions. Production of water. (WP) is computed 

as an output divided by the amount of water used, 

normally expressed as actual evapotranspiration, 

also known as (ETa). In this study, the water 

productivity gap (WPgap) was calculated in a 

systematic solicitation of actual water productivity 

values (WPactual) and ideal water improvement 

standards (WPoptimal) in the form of Equation (8) 

(Zheng et al., 2018): 

 

𝑊𝑃𝑔𝑎𝑝 = 𝑊𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 − 𝑊𝑃𝑎𝑐𝑡𝑢𝑎𝑙  (8) 
 

where, WPgap is the water productivity gap, 

representing the shortfall from the potential, 

expressed in kg·m3; WPactual is the actual water 

productivity measured under existing field, 

management, and climatic conditions; and WPpotential 

is the optimal or potential water productivity 

attainable under best management practices and 

favorable environmental conditions. 

Within the frame of this study, WPactual was obtained 

by measurements of field-observed crop yields and 

remotely sensed ETa and was a representation of the 

current on-farm practice and specific site 

environment limitations. On the other hand, WPoptimal 

was derived in terms of literature-reported 

benchmarks and in terms of simulation product 

under high-yielding cultivar, high-quality 

agronomical management, non-limiting soil fertility, 

and limited water supply. The discrepancy between 

these two values gives an evidence-based estimate of 

the unrealized water use efficiency, hence, lines up 

opportunities to intervene in a specific area like 

efficient irrigation scheduling, deficit irrigation 

technique, or precision water management. 

 

3. Results and Discussion 

3.1. Evaluation of NBWP and GBWP 

Based on WAPOR Portal Data 
This analysis is based on a comparative evaluation 

of Net Biomass Water Productivity (NBWP) and 

Gross Biomass Water Productivity (GBWP) across 

agricultural lands P, Q, and R from 2020 to 2024 

(Table 3), utilizing tabulated productivity values 

along with associated temperature and precipitation 

data (Figure 3).  The results reveal significant trends 

influenced by environmental conditions and water 

management practices. During this period, NBWP 

increased steadily in all three fields, while GBWP 

exhibited more fluctuations, likely due to variations 

in rainfall, temperature, and irrigation practices 

(Figure 4-5). 
 

Table 3. Yearly values of GBWP and NBWP (kg/m³) for agricultural fields P, Q, and R during 2020–2024.   

Year 
P Q R 

GBWP (Kg/m3) NBWP (Kg/m3) GBWP (Kg/m3) NBWP (Kg/m3) GBWP (Kg/m3) NBWP (Kg/m3) 

2020 1.97 2.42 1.84 2.40 2.47 3.15 

2021 1.50 2.25 1.54 2.30 1.46 2.12 

2022 2.29 3.07 2.42 3.35 1.28 2.89 
2023 2.33 3.09 2.63 3.61 2.50 3.56 

2024 2.07 3.03 2.45 3.33 2.71 3.55 
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In Field P, NBWP rose from 2.42 to 3.03 kg/m³, 

indicating a 25% increase. This improvement may be 

attributed to enhanced irrigation efficiency or 

reduced water losses. However, a notable drop in 

GBWP in 2021 (down to 1.5 kg/m³), coinciding with 

the lowest recorded rainfall (10 mm), suggests a 

direct impact of drought or elevated temperatures. 

By 2023, with rainfall reaching 60 mm, NBWP 

improved to 3.09 kg/m³, confirming the role of  
 

  

  

 
Figure 3 – Temperature and precipitation trends: a five-year analysis (2020–2024), with yellow highlights indicating the crop 

growth period 

 

favorable environmental conditions in enhancing 

water productivity. 

Field Q experienced the highest increase in NBWP, 

rising from 2.40 kg/m³ in 2020 to 3.33 kg/m³ in 2024 

(a 39% increase). This upward trend likely reflects a 

better adaptation to environmental conditions and 

the adoption of advanced irrigation technologies. In 

2023, under the highest recorded temperature (25°C) 

and substantial rainfall (60 mm), NBWP peaked at  

 

3.61 kg/m³, highlighting how optimal temperature 

and moisture balance can maximize water use 

efficiency. Nonetheless, the GBWP drop in 2021 (to 

1.54 kg/m³) underscores this field’s sensitivity to 

sudden climatic variations. 

Field R demonstrated the greatest responsiveness to 

rainfall variability. In 2021, with rainfall dropping to 

10 mm, NBWP declined to 2.12 kg/m³—the lowest 

value among all fields during the study period—
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highlighting the need for targeted drought 

management. However, by 2023, with rainfall 

improving to 60 mm, NBWP recovered sharply to 

3.56 kg/m³, revealing the field's high recovery 

potential under adequate water availability. 

Interestingly, NBWP declined in 2022 (2.89 kg/m³) 

despite moderate rainfall and temperature, possibly 

due to secondary stress factors like pest outbreaks or 

reduced soil quality.  
Satellite imagery showing the spatial and temporal 

variations of NBWP and GBWP across fields P, Q, 

and R supports the conducted analyses (Figures 6-7). 

Figure 6 illustrates the spatial and temporal 

dynamics of GBWP, ranging from 0.7 to 3.1 kg/m³, 

while Figure 7 depicts NBWP variations ranging 

from 1.5 to 6.7 kg/m³. These figures highlight field-

specific and inter-annual differences in biomass 

water productivity, complementing the 

meteorological data shown in Figure 3. 
Temperature and precipitation data presented in 

Figure 3 were obtained from the Parsabad-Moghan 

Meteorological Station, with temperature in °C and 

precipitation in mm, providing the climatic context 

for analyzing the trends in GBWP and NBWP. 

The gap between NBWP and GBWP also reveals 

insights into hidden water losses. For instance, in 

Field Q during 2023, the notable difference between 

GBWP (2.63) and NBWP (3.61) may indicate 

reduced evaporation losses or improved water 

retention due to efficient drainage systems. In 

contrast, Field P in 2024 shows a narrower gap 

(GBWP = 2.07, NBWP = 3.03), possibly reflecting 

new limiting factors such as soil salinity or thermal 

stress. 

The year 2021 emerges as a critical turning point 

across all fields, where decreased rainfall and 

possibly higher temperatures led to simultaneous 

drops in both NBWP and GBWP. Field R was most 

affected, with NBWP falling to its lowest level (2.12 

kg/m³), emphasizing the need for robust drought 

mitigation strategies. Conversely, 2023—

characterized by high rainfall and optimal 

temperatures—marked a peak in water productivity 

for Fields Q and R, suggesting that environmental 

balance is key to maximizing efficiency. 
Consistent with the findings reported by Parchami-

Araghi et al. (2022), who analyzed physical water 

productivity (WPI) for soybean in the downstream 

sectors of the Moghan irrigation network and 

reported average values around 0.42 kg/m³. Their 

results confirm that improved irrigation scheduling 

and reduced water losses significantly enhance water 

use efficiency under semi-arid conditions similar to 

the current study area.  In a recent assessment by 

Akhavan Giglou et al. (2023), the physical and 

economic water productivity of major crops such as 

silage maize, cotton, and tomato was evaluated 

across the Moghan plain. They concluded that 

biomass water productivity was highly sensitive to 

inter-annual climatic variability and management 

decisions, which aligns with the GBWP fluctuations 

observed in our Fields P, Q, and R.  Moreover, 

Farahza et al. (2020) demonstrated that the adoption 

of modern irrigation systems (e.g., sprinkler and 

drip) in the Moghan region led to simultaneous 

improvements in both physical and economic water 

productivity. These findings support the upward 

NBWP trend observed in Field Q, likely due to the 

implementation of advanced water management 

technologies during the study period. 

 

 
Figure 4- NBWP (Kg/m3) for Agricultural fields P, Q, and R 

between (2020-2024) 
 

 
Figure 5- GBWP (Kg/m3) for agricultural fields P, Q, and R 

(2020-2024) 
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Figure 6- Spatial and temporal dynamics of GBWP in agricultural fields P, Q, and R (2020–2024) 
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Figure 7- Spatial and temporal dynamics of NBWP in agricultural fields P, Q, and R (2020–2024) 

 

3.2. Water Productivity Gap 
A comparative analysis of Gross and Net Biomass 

Water Productivity (GBWP and NBWP) across the 

three agricultural centers (P, Q, and R), based on 

both ground-based measurements and WaPOR 

estimations, reveals consistent and significant 

discrepancies (Tables 4, 5, and 6). In all years from 

2020 to 2024, GBWP values calculated from field 

data were consistently higher than those estimated 

by WaPOR. For instance, in 2024, the measured 

GBWP in field Q was 5.49 kg/m³, while the WaPOR 

estimate for the same field and year was only 

2.45 kg/m³ (Table 5). A similar pattern was observed 

in NBWP, where field-based values ranged between 

4.17 and 5.71 kg/m³, while WaPOR estimations 

remained between 2.12 and 3.61 kg/m³ (Table 6).
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Table 4. Field-based irrigation and yield parameters for maize cultivation in selected agricultural centers 

Farm Name Irrigation Water Depth (mm) Covered Area (ha) Maize Yield (Kg) Previous Crop Before Maize 

P 552.41 82.95 2488726.32 Wheat 

Q 234.69 14.24 480797.978 Canola 
R 268.32 22.89 384638.382 Wheat 

 
Table 5. Comparison of measured and WaPOR portal GBWP values for fields P, Q, and R (kg/m³) from 2020 to 2024 

YEAR 
P (Kg/m3) Q (Kg/m3) R (Kg/m3) 

Measured WaPOR Portal Measured WaPOR Portal Measured WaPOR Portal 

2020 4.86 1.97 5.47 1.84 4.38 2.47 
2021 4.62 1.50 5.20 1.54 4.16 1.46 

2022 4.57 2.29 5.14 2.42 4.11 1.28 

2023 4.35 2.33 4.89 2.63 3.91 2.50 
2024 4.88 2.07 5.49 2.45 4.39 2.71 

 
Table 6. Comparison of measured and WaPOR portal NBWP and WP Gap values for fields P, Q, and R (kg/m³) from 2020 to 2024 

YEAR 

P (Kg/m3) Q (Kg/m3) R (Kg/m3) 

NBWP WP Gap NBWP WP Gap NBWP WP Gap 

Measured WaPOR  Measured WaPOR  Measured WaPOR  Measured WaPOR  Measured WaPOR  Measured WaPOR  

2020 5.02 2.42 4.98 7.58 5.65 2.4 4.35 7.60 4.52 3.15 5.48 6.85 

2021 4.63 2.25 5.37 7.75 5.21 2.3 4.79 7.70 4.17 2.12 5.83 7.88 

2022 4.62 3.07 5.38 6.93 5.19 3.35 4.81 6.65 4.15 2.89 5.85 7.11 

2023 4.81 3.09 5.19 6.91 5.41 3.61 4.59 6.39 4.33 3.56 5.67 6.44 

2024 5.13 3.03 4.87 6.97 5.71 3.33 4.29 6.67 4.62 3.55 5.38 6.45 

Mean 4.84 2.77 5.16 7.23 5.43 3.00 4.57 7.00 4.36 3.05 5.64 6.95 

To calculate the water productivity gap (Equation 7), 

first, the potential water productivity was calculated. 

According to the field data, the highest yield of 70 

ton/ha was recorded with the T-type irrigation 

system, with an efficiency of 90% and a water 

consumption of 7000 m3/ha. Therefore, in the 

potential case, the water productivity value was 

obtained as 10 kg/m3. Considering the potential 

productivity, the productivity gap was calculated. 

The results showed that the water productivity gap 

for the measured data in the P, Q and R farms was 

5.16, 4.57 and 5.64 kg/m3, respectively, and for the 

data extracted from the WaPOR Portal for the P, Q 

and R farms, the values were 7.23, 7 and 6.95 kg/m3, 

respectively (Table 6) .  These discrepancies stem 

from fundamental differences in data sources and 

methodological approaches. Field-based 

measurements rely on direct records of irrigation 

water depth, cultivated area, and actual harvested 

yield (Table 4), thereby reflecting localized 

agronomic management such as crop rotation, 

irrigation frequency, and fertilization practices. For 

example, field Q, which consistently showed the 

highest water productivity, followed a canola–maize 

rotation—a practice widely recognized to improve 

soil health and enhance nutrient and water uptake. 

Such agronomic details are rarely captured in remote 

sensing–based models like WaPOR.  Conversely, 

WaPOR relies on medium-resolution satellite 

imagery and bio-physical modeling, which 

inherently apply spatial and temporal averaging. 

While this ensures regional consistency and enables 

large-scale assessments, it often overlooks farm-

level management heterogeneity, leading to an 

underestimation of actual water productivity. The 

discrepancy may also be exacerbated by differences 

in evapotranspiration estimation techniques, the use 

of generalized crop coefficients, and the static nature 

of some WaPOR input layers.  Notably, temporal 

trends of field-based GBWP and NBWP values 

remained relatively stable across the five years, 

while WaPOR-derived values exhibited a more 

variable and increasing trend. This divergence could 

result from annual updates in WaPOR algorithms or 

climatic changes influencing satellite-based 

evapotranspiration estimates. However, considering 

that local agronomic practices remained largely 

consistent during the study period, field-based data 

likely provide a more reliable representation of true 

productivity performance. 

The observed productivity gap is not unique to this 

study. Recent investigations support similar 

findings. For example, Blatchford et al. (2020) 

emphasized the limitations of coarse-resolution 

remote sensing in accurately capturing water 

productivity at the plot scale. Additionally, Patil et 

al. (2015) highlighted the importance of integrating field observations with Earth observation data to reduce 

uncertainty in productivity assessments across diverse agroecosystems.  

 

3.3. Assessment of Portal-Based 

Estimates versus Observed Field 

Data 
In plot P, a uniform irrigation depth of 55.24 mm per 

10-day period appears adequate and well-aligned 

with crop water requirements during early  

 

development (vegetative and rapid leaf expansion 

stages, mid-June to early July). This is supported by 

high ETIa (41.97 mm) and Water Stress Coefficients 

(WSC) values (>1.5), which resulted in a favorable 

GBWP of 1.97 kg/m³ in 2020. However, as the 

season progressed into July–August (tasseling and 
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ear formation), crop water demand gradually 

declined, yet the irrigation rate remained unchanged. 

With evapotranspiration (ETc) slightly dropping and 

day temperatures rising (above 24.5 °C), this 

resulted in marginal over-irrigation during late 

reproductive stages, possibly increasing non-

beneficial losses and contributing to a GBWP drop 

in 2021 to 1.50 kg/m³ despite consistent irrigation. 

 

 

 

 

 

 
Figure 8 – Annual comparison of measured ETc, portal-based ETIa, and decadal irrigation water depth across fields P, Q, and R 

(2020–2025) 
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In contrast, plot Q received only 23.47 mm of 

irrigation per 10 days—sufficient for early growth 

but inadequate during mid-to-late season, especially 

during the reproductive phase when ETc surpassed 

50 mm. This under-irrigation, combined with 

elevated temperatures (~25 °C in July 2021), likely 

limited photosynthetic efficiency and biomass 

accumulation. As a result, ETIa dropped below 

20 mm in several decades, and GBWP declined to 

1.54 kg/m³ in 2021, while NBWP followed a slower 

recovery trend despite improved weather conditions 

in subsequent years.  Plot R, irrigated with 26.83 mm 

per 10-day period, exhibited similar constraints. 

While this amount may have met early-season 

requirements, it failed to match peak ETc demands 

during tasseling and grain-filling stages (July–

August), which coincided with hot and dry weather. 

Consequently, actual crop water uptake (ETIa) 

remained suboptimal, particularly in 2021, where 

NBWP dropped to its minimum (2.12 kg/m³), 

indicating acute water stress. Recovery in GBWP 

and NBWP was observed in 2023, likely due to 

enhanced rainfall (60 mm) and moderate 

temperatures (~23 °C), which helped mitigate 

irrigation shortfalls. 

A key observation is that none of the plots 

implemented stage-specific irrigation. Fixed 

irrigation rates across all decades ignored the bell-

shaped curve of crop water demand, leading to 

inefficiencies—over-irrigation during physiological 

maturity (e.g., September) and under-irrigation 

during peak demand periods (mid-season). The 

absence of flexible scheduling likely suppressed 

yield potential and water productivity, especially 

under heat stress conditions where crops require 

tightly controlled moisture regimes to maintain 

stomatal function and assimilate production.  
 

Conclusion 
This study conducted a comprehensive comparative 

analysis of Net and Gross Biomass Water 

Productivity (NBWP and GBWP) across three 

agricultural fields (P, Q, and R) over five growing 

seasons (2020–2024), incorporating both ground-

based measurements and WaPOR remote sensing 

estimates. The findings reveal clear inter-annual and 

spatial variability in water productivity, closely 

influenced by irrigation scheduling, rainfall patterns, 

temperature fluctuations, and crop management 

practices such as rotation.  While NBWP showed a 

consistent upward trend in all fields—especially in 

Field Q, where advanced irrigation techniques and a 

canola–maize rotation contributed to sustained 

gains—GBWP was more sensitive to climatic 

extremes and non-optimized water use. The year 

2021 emerged as a critical turning point marked by 

simultaneous declines in both GBWP and NBWP 

due to limited rainfall and elevated temperatures. 

Conversely, 2023 presented optimal climatic 

conditions, leading to productivity recovery, 

particularly in Fields Q and R. The comparison 

between WaPOR estimates and field-derived data 

highlighted a significant water productivity gap, 

with satellite-derived GBWP and NBWP values 

consistently underestimating actual productivity by 

up to 50% or more. This discrepancy is primarily 

attributed to the coarse spatial resolution, static 

model assumptions, and inability of WaPOR to 

capture localized agronomic nuances, such as stage-

specific irrigation or soil fertility variations. 

Nonetheless, WaPOR’s consistent structure offers 

valuable insights for regional-scale assessments and 

long-term monitoring.  Moreover, the analysis of 

decade-wise irrigation depth emphasized the 

limitations of uniform irrigation scheduling. Fixed 

irrigation rates failed to meet dynamic crop water 

requirements, leading to either over-irrigation in 

late-season stages or water stress during peak 

demand phases (tasseling and grain filling), 

especially under high-temperature conditions. These 

mismatches likely suppressed both biomass 

production and water use efficiency. In conclusion, 

this study underlines the critical need for integrated 

irrigation scheduling, climate-adaptive management, 

and field-calibrated remote sensing approaches to 

bridge the productivity gap and enhance sustainable 

water use. These should be implemented in a 

practical manner based on smart irrigation (e.g., 

based on soil moisture sensors, variable rate 

irrigation, automated delivery systems), precision 

agriculture tools (e.g., various UAV-based 

capabilities to monitor crops and implement site-

specific nutrient applications), and stage-based plans 

of allocating water.  Adoption of these measures can 

improve the accuracy of water productivity 

assessments, increase resource-use efficiency, and 

strengthen the resilience of agroecosystems in semi-

arid regions such as Moghan. 
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