
 

Modeling streamflow dynamics under climate and land use shifts using 

MIKE SHE in the upper Omo Gibe catchment, Ethiopia 

 
Kindie Zewdie Werede 1 , Tarun Kumar Lohani 2+ , Bogale Gebremariam Neka 3 , Getachew Bereta 

Geremew 4  

1 PhD scholar in Hydraulic Engineering, Faculty of Hydraulic and Water Resources Engineering, Water Technology 

Institute, Arba Minch University, Arba Minch, Ethiopia 
2 Professor, Faculty of Hydraulic and Water Resources Engineering, Water Technology Institute, Arba Minch 

University, Arba Minch, Ethiopia  

3 Associate Professor, Faculty of Hydraulic and Water Resources Engineering, Water Technology Institute, Arba 

Minch University, Arba Minch, Ethiopia  

4 Associate Professor, Faculty of Hydraulic and Water Resources Engineering, Water Technology Institute, Arba 

Minch University, Arba Minch, Ethiopia  

 

Abstract 

This study utilized the MIKE SHE hydrological model to analyze the combined effects of shifting 

climatic conditions and land use/land cover (LULC) changes on river discharge dynamics. We 

developed three distinct scenarios by integrating three climate data periods (1990–2000, 2001–2010, 

and 2011–2020) with three LULC maps (1990, 2005, and 2020). The model was systematically 

calibrated and validated, achieving strong performance metrics. The Nash-Sutcliffe Efficiency (NSE) 

and coefficient of determination (R2) were 0.83 and 0.82 for calibration, and 0.80 and 0.81 for validation, 

respectively, demonstrating the model's reliability in simulating the catchment's hydrological processes. 

Our findings reveal a substantial influence of both LULC and climate changes, with the most notable 

impacts observed during the 2001–2010 and 2011–2020 periods. LULC alterations increased surface 

runoff by 10.29% and 2.38%, while decreasing subsurface flow by 6.03% and 6.82%, and reducing 

evapotranspiration by 0.75% and 5.49%. Climate variations further amplified these effects, augmenting 

surface runoff by 2.14% and 12.72%. This was accompanied by corresponding reductions in subsurface 

flow of 7.43% and 10.40%, and in evapotranspiration of 10.03% and 21.65%. Interestingly, both climate 

and LULC changes promoted subsurface flow and evapotranspiration during the 2001–2010 period 

before exhibiting a declining trend in 2011–2020. The results underscore that the expansion of 

settlements and the reduction of forest and shrub land have intensified streamflow while lowering 

subsurface flow and evapotranspiration. These findings emphasize the critical need for integrated 

climate and land use considerations in future water resource management strategies. 
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1. Introduction 

The complex interplay between climatic 

variables and land surface characteristics 

fundamentally drives hydrological processes. 

Alterations in climate and land use patterns can 

reshape a basin's water cycle, affecting 

streamflow, groundwater recharge, and soil 

moisture (Lucas-Borja et al., 2020). These shifts 

present significant challenges to water resource 

management, especially in data-scarce regions 

like Ethiopia, where a nuanced understanding of 

these dynamics is crucial for sustainable 

development (Guduru et al., 2023; Getachew et 

al., 2021). The Upper Omo Gibe catchment in 

Ethiopia is a prime example of a region facing 

significant hydrological challenges from 

concurrent climate and land use shifts, which 

have led to a decline in groundwater recharge and 

increased surface runoff (Gebremichael et al., 

2024; Truneh et al., 2023). Recent research has 

increasingly focused on the combined effects of 

climate and land use changes on hydrological 

systems. A substantial body of work has utilized 

models like SWAT and HEC-HMS for large-scale 

assessments (Tassew et al., 2019). For example, 

studies in Ethiopia by Guduru et al. (2023) and 

Getachew et al. (2021) have used these models to 

assess hydrological changes. However, a growing 

consensus suggests that these models, despite 

their utility, often fail to accurately represent the 

fine-scale interactions between surface and 

subsurface water. This limitation has spurred a 

heightened interest in more sophisticated, fully-

distributed hydrological models. 

Recent research has increasingly focused on the 

combined effects of climate and land use changes 

on hydrological systems. While a substantial 

body of work has utilized models like SWAT and 

HEC-HMS for large-scale assessments, a 

growing consensus suggests that these models, 

despite their utility, often fail to accurately 

represent the fine-scale interactions between 

surface and subsurface water. This limitation has 

spurred a heightened interest in more 

sophisticated, fully-distributed hydrological 

models. 

Numerical simulations have become an 

indispensable tool in this field. The MIKE SHE 

model, a physically-based, spatially-distributed 

hydrological model, has been particularly 

effective. This model's process-based approach 

integrates surface water, groundwater, and 

evapotranspiration, providing a more detailed and 

accurate representation of hydrological 

complexities (Han et al., 2023). This makes it 

well-suited for analyzing the synergistic effects 

of climate and land use changes. Furthermore, 

several recent studies have emphasized the 

necessity of a holistic approach, underscoring 

that integrating the analysis of both climate and 

land use changes is essential for advancing water 

resource management and mitigating risks like 

floods and droughts (Lucas-Borja et al., 2020; 

Haddeland et al., 2014). 

In Ethiopia, researchers have successfully applied 

the MIKE SHE model to address similar 

hydrological challenges. For instance, in the 

Shaya catchment, a study found that although 

rainfall showed no significant trend, streamflow 

increased significantly over two decades due to 

the expansion of agricultural and settlement areas 

(Aredo et al., 2021). Similarly, research in the 

Lake Tana sub-basin employed a coupled MIKE 

SHE/MIKE HYDRO model to forecast 

streamflow dynamics under climate change, 

confirming the model's ability to simulate future 

hydrological conditions (Abate et al., 2025). 

Most notably, a recent study by Werede et al. 

(2024) specifically focused on the Upper Omo 

Gibe catchment and found that land use changes 

had a significant impact on streamflow, leading to 

increased flows during the wet season and 

decreased flows during the dry season. These 

findings underscore the model's capability to 

capture the complex, localized impacts of land 

use change, reinforcing the need for its 

application in other critical catchments. 

Despite these advances, a comprehensive 

analysis that simultaneously considers the 

combined effects of both climate and land use 

changes in the Upper Omo Gibe catchment using 

a high-resolution, process-based model remains a 

critical gap. Werede et al. (2024) focused 

primarily on land use change, highlighting the 

need for further research that integrates climate 

factors for a more complete understanding. This 

study aims to bridge this critical gap by 

employing the MIKE SHE model to assess the 

combined effects of climate change and land use 

alterations on streamflow in the Upper Omo Gibe 
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catchment. By integrating high-resolution 

climate and land use data, this research seeks to 

provide a more nuanced understanding of how 

these factors interact, offering valuable insights 

for developing more effective and adaptive water 

management strategies for the region. 

 

2. Materials and Methods 

2.1. Study Area and Data 

The Upper Omo Gibe catchment, situated in the 

southwestern highlands of Ethiopia, is 

geographically located at 35° 36’ E to 38° 34’ E 

longitude and from 6° 25’ N to 9° 24’ N latitude 

(Figure 1). The region's topography is rugged and 

highly varied, with elevations ranging from 746 

m to 3522 m above sea level (Figure 1). The 

highest elevations are found in the northern part 

of the catchment, contributing to diverse 

microclimates and ecological zones that 

significantly influence local hydrological 

processes. 

The climate is characterized by a rainy season 

with annual rainfall estimated at 1200–1425 mm 

and a distinct dry season with minimal 

precipitation (Degefu & Bewket, 2014). 

Temperatures in the catchment are generally 

warmer in the south, with maximums ranging 

from 25℃ to 30℃ and minimums from 9℃ to 

12℃. The annual average temperature is 19.4℃. 

Covering an area of 33210 km2, the catchment is 

drained by major rivers, including the Gibe, Omo 

Gibe, and Gilgel Gibe, as well as numerous 

tributaries. This extensive river network supports 

downstream ecosystems and human settlements, 

providing water for agriculture, drinking, and 

hydroelectric power generation. The Omo basin's 

substantial potential for irrigation and 

hydropower development, along with its rich 

biodiversity, highlights its ecological and 

economic importance (Awulachew et al., 2007). 

 

 
Figure 1. The digital elevation model of the upper Omo Gibe catchment. 

 
2.1.1. Hydro-meteorological data acquisition 

and interpretation 
Daily climatological data, including precipitation 

and temperature extremes (minimum and 

maximum), were obtained from the Ethiopian 

National Meteorological Agency (EMA) from 

1990 to 2020 (Table 1). This data was collected 

from nine meteorological stations, a common 

practice in regions with sparse monitoring 

networks to address data continuity and station 

establishment challenges (Awulachew et al., 

2007). The selection criteria for these datasets 

were based on data completeness, long-term 

availability, and suitability for hydrological 
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model analysis, which are critical steps for 

reducing uncertainty in model outputs (Han et al., 

2023). Additionally, streamflow data for the 

period of 1990 to 2014 were acquired from the 

Hydrology Department of the Ethiopian Ministry 

of Water and Energy (MoWE). Following 

standard hydrological modeling procedures, 

reference evapotranspiration was computed using 

the widely accepted Penman-Monteith method, a 

method known for its accuracy and robustness in 

various climatic conditions (Allen et al., 1998). 

The entire dataset was subjected to a thorough 

screening process to identify and address outliers 

and incomplete data, ensuring the quality and 

reliability of the inputs for the MIKE SHE model 

(Ayana et al., 2021). This rigorous data 

preparation is essential for generating reliable 

simulations of catchment processes (Butts et al., 

2004). Corrections were made by cross-

referencing records with data from nearby 

stations to ensure accuracy. Catchments and 

monitoring stations were chosen based on the 

completeness and quality of available data, with 

only time series containing less than 10% missing 

values for daily streamflow and monthly weather 

records included in the analysis. This rigorous 

selection and validation process helped maintain 

data integrity, ensuring that the dataset used for 

analysis was both comprehensive and reliable 

(Milly et al., 2005; WMO, 2008). 

 
Table 1. Hydro-meteorological stations in the upper Omo Gibe Basin. 

S.No 
Station 

name 

Latit

ude 
Longitude Altitude Precipitation 

Temperature 

maximum 

Temperature 

minimum 
Period 

(deg

.) 
(deg.) (masl) (mm) (℃) (℃)   

1 Assendabo 7.77 37.23 1770 √ √ √ 1990 2020 

2 Hossana 7.55 37.78 1729 √ √ √ 1990 2020 

3 Jimma 7.67 36.83 1736 √ √ √ 1990 2020 

4 Lemugenet 8.1 36.96 1688 √ √ √ 1990 2020 

5 Sekoru 7.93 37.43 1855 √ √ √ 1990 2020 

6 Shebe 7.52 36.52 1781 √ √ √ 1990 2020 

7 Woliso 8.55 37.98 2063 √ √ √ 1990 2020 

8 Wolita 7.01 37.75 1869 √ √ √ 1990 2020 

9 Wolkite 8.28 37.77 1875 √ √ √ 1990 2020 

10 Abelity 7.92 37.4 - - - - 1990 2014 

** The numbers from 1 to 9 represent meteorological stations, and 10 represents hydrological stations 

 

2.1.2. Spatial data sources and analysis inputs 

Accurate simulations in hydrological modeling, 

such as those using the MIKE SHE model, rely 

on high-resolution spatial data for representing 

the intricate spatial variability in terrain, land 

cover, and soil properties within the watershed 

(Talib & Randhir, 2017). The 30-meter resolution 

Digital Elevation Model (DEM) and multi-

temporal Landsat imagery, sourced from the 

USGS Earth Explorer website, provide crucial 

inputs for this purpose. Detailed spatial data, like 

those presented in Table 3 and Figure 2a, aid in 

capturing elevation-dependent hydrological 

processes, which are critical for flow direction 

and accumulation, as noted by studies such as 

Kasei et al. (2010) and Beck et al. (2018). The 

Omo-Gibe basin soils widely comprise Nitosols 

soil, which are deep, red or reddish brown, and 

well-drained, and are the most productive soils of 

Ethiopia. However, soil degradation threatens the 

(Nitosols) productive capacity.  Nitosols soil is 

found mainly in eastern Africa at higher altitudes 

(FAO, 2001) and is the dominant soil in the 

Ethiopian highland, especially in the Western and 

southwestern part of the country (Elias, 2017). 

Nitosols are widely spread in the upper part of the 

basin. 

Table 2. Soil type distribution by area and 

coverage in the Upper Omo Basin. 

Soil Type 
Coverage 

(%) 

Area 

(km²) 

Eutric Nitosols 77.98% 25,897.55 

Eutric Cambisols 8.75% 2,906.44 

Humic 

Cambisols 
6.63% 2,204.24 

Ochric Andosols 3.28% 1,090.11 

Pellic Vertisols 2.56% 850.74 

Plinthic 

Ferralsols 
0.80% 260.92 
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The availability of multi-temporal Landsat 

images enhances the model's capability to 

integrate land cover changes over time, capturing 

the dynamic influences of vegetation cover and 

land use on runoff and infiltration rates (Xia et al., 

2020). By covering different temporal and spatial 

scales, these data sources help to ensure the 

representativeness and flexibility needed for 

reliable MIKE SHE simulations. For instance, 

Tarekegn et al. (2021) emphasize that high-

resolution data significantly improve model 

calibration and validation, allowing for better 

hydrological predictions, especially in regions 

with varied topography and land cover. 

Moreover, the inclusion of a soil map from the 

Ethiopian Ministry of Water and Energy 

(MoWE), or collaborating government bodies 

like the Ministry of Agriculture, adds a crucial 

layer of spatial accuracy (Table 2). This data is 

essential for determining soil-specific hydraulic 

characteristics, such as porosity and permeability, 

which govern soil water retention and movement 

within the model. Recent studies in the Ethiopian 

highlands have confirmed the significant 

influence of these soil parameters on hydrological 

simulations (Berhanu et al., 2013; Truneh et al., 

2023). By leveraging such diverse data sources, 

this study ensures model accuracy and 

reproducibility, as comprehensive datasets allow 

researchers to validate the MIKE SHE model 

against observed hydrological patterns in 

Ethiopia’s variable landscapes (Han et al., 2023; 

Butts et al., 2004). This rigorous approach is 

particularly important for capturing the complex 

surface and subsurface water interactions that are 

key to understanding the catchment's response to 

environmental changes. 

 
Table 3. Material sources used in land use and land cover classification. 

S.no. Image Sources Resolution 

(m) 

Sensor 

type 

Path/row Acquisition 

Date 

1 Landsat5 http://earthexplore.usgs.gov/ 30 TM 169/055 January 1990 

2 Landsat7 http://earthexplore.usgs.gov/ 30 ETM 169/055 January 2005 

3 Landsat8 http://earthexplore.usgs.gov/ 30 OLI 169/055 February2020 

The elevation ranges from 697 m to 3851 m. The 

highest elevation occurs in patches ranging 

beyond 2580 m, 1800 m – 2100 m, all along the 

northern, eastern, and southern frontiers, some 

parts of the western and central regions. The 

northern, central and some small patches have an 

average elevation of 1500 m (Figure 2b). 
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Figure 2. left) Soil map of the study area; right) topographic map of the study area 

 

2.2. Methodology 

2.2.1. LULC type accuracy assessment 

This method evaluates the accuracy of land use 

and land cover (LULC) classifications derived 

from remote sensing and GIS techniques. This 

involved a comparison of our classified LULC 

map against a robust set of reference data, a 

standard procedure for ensuring the reliability of 

land cover products (Congalton & Green, 2019). 

The reference data was meticulously compiled 

from a combination of field surveys and high-

resolution imagery from platforms like Google 

Earth. 

To ensure a comprehensive assessment, we 

collected fifty ground-truth points for each land 

cover category. These points were then cross-

referenced with the corresponding pixel's 

assigned classification to gauge its accuracy 

against our reference sources. We utilized two 

widely accepted metrics for this evaluation: 

overall accuracy and the Kappa coefficient 

(Foody, 2002). Overall accuracy provided a 

straightforward percentage of correctly classified 

pixels across the entire study area. In contrast, the 

Kappa coefficient, a more sophisticated statistical 

measure, quantified the agreement between our 

classified image and the ground truth data while 

accounting for the possibility of random chance 

agreement. This dual approach ensured a rigorous 

assessment of our LULC classification. A kappa 

coefficient of 1 denotes perfect agreement, while 

0 suggests agreement equivalent to chance, and 

negative values indicate agreement worse than 

chance (Anderson, 1976; Ismail & Jusoff, 2008) 

(Equation 1 and Equation 2) 
Overall Accuracy

=
Number of correctly classified pixels

Total number of pixels
 

× 100 

(1) 

Kappa (K)  

=  
𝑚 ∑ 𝑥𝑖𝑖 −  ∑ (𝑥𝑖+ ×  𝑥+𝑖)

𝑛
𝑖=1

𝑛
𝑖=1

𝑚2 − ∑ (𝑥𝑖+ ×  𝑥+𝑖)
𝑛
𝑖=1

× 100 
(2) 

where, n represents the total number of land cover 

types, m denotes the overall number of sample 

pixels, the term 𝑥𝑖𝑖  indicates the number of pixels 

correctly classified as land cover type i, 𝑥𝑖+ 
denotes the count of type i pixels within the 

validation sample sets, and 𝑥+𝑖 represents the 

number of type i pixels in the reference 

corresponding to the sample set. 
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2.2.2. Hydrological MIKE SHE model 

descriptions   

The MIKE SHE model, developed by the Danish 

Hydraulic Institute (DHI), is recognized as a 

highly comprehensive tool in hydrological 

modeling for its extensive capabilities in 

simulating critical land-based hydrological 

processes (DHI, 2023; Graham & Butts, 2005). 

This model is fully distributed and physically 

based, enabling it to accurately capture 

interactions within the hydrological cycle, such 

as those between surface water and groundwater 

systems, across various watershed and basin 

scales. The model's strength lies in its ability to 

integrate a wide range of hydrological processes, 

including precipitation, evapotranspiration, 

surface runoff, infiltration, and streamflow 

routing, as well as groundwater flow, making it 

highly effective for applications in water resource 

management, flood forecasting, and ecosystem 

research (Butts et al., 2004; Singh & Woolhiser, 

2002). 

MIKE SHE's deterministic framework utilizes 

orthogonal grid networks to spatially distribute 

watershed parameters, climate data, and 

hydrological responses, allowing fine-scale 

spatial allocation within each grid cell, and 

extending to sub-surface layers to model vertical 

and lateral flows (Graham & Butts, 2005). The 

model integrates hydrological principles, 

applying the Saint-Venant equations for channel 

and overland flow, Richards' equation for 

unsaturated zone flow, and the finite difference 

method for saturated groundwater flows. 

Evapotranspiration is modeled using methods 

such as the Kristensen and Jensen approach, 

highlighting MIKE SHE's application of 

physically robust methods to support high-

fidelity simulations of real-world hydrological 

dynamics (Abbott et al., 1986). 

Specialized modules within MIKE SHE extends 

its versatility, including the Water Quality (AD), 

Sediment Transport (SE), Dual Porosity (DP), 

Geochemical Processes (GC), Crop Growth and 

Nitrogen (CN), and Irrigation (IR) modules, 

which provide detailed modeling of additional 

processes such as pollutant transport, 

geochemical interactions, and agricultural 

impacts within the hydrological system (Singh & 

Woolhiser, 2002). These modules make MIKE 

SHE particularly suitable for integrated 

catchment management where both quantity and 

quality aspects of water resources need to be 

considered holistically. 

 

2.2.3. MIKE SHE model input data 

The MIKE SHE model relies heavily on a diverse 

array of critical input datasets to effectively 

simulate hydrological processes with precision. 

These foundational inputs encompass 

meteorological variables such as precipitation, 

temperature, streamflow, and evapotranspiration 

to comprehend the dynamics of water movement 

throughout the watershed. Beyond 

meteorological data, detailed information on soil 

properties assumes a pivotal role. Parameters like 

infiltration rates and hydraulic conductivity 

profoundly influence water permeation through 

the soil profile, shaping runoff patterns and 

groundwater recharge dynamics. Accurate 

representations of land use and land cover are 

equally indispensable inputs. They dictate surface 

runoff characteristics, evapotranspiration rates, 

and the overall water balance within the 

watershed. The topography of the study area, 

encompassing elevation and slope, exerts a 

significant influence on hydrological responses, 

affecting flow velocities and accumulation areas. 

Ensuring the reliability and accuracy of these 

input datasets is paramount to the MIKE SHE 

model's efficacy. Calibration involves meticulous 

adjustment of model parameters to closely align 

simulated outputs with observed data. 

Concurrently, validation confirms the model's 

ability to replicate observed hydrological 

behaviors under varying environmental 

conditions. This rigorous calibration and 

validation process enhances the model's 

credibility, enabling it to furnish dependable 

predictions regarding water flow dynamics, 

availability, and quality. By providing robust 

simulations backed by calibrated and validated 

inputs, the MIKE SHE model supports informed 

decision-making processes that are crucial for 

effective water resource management. It serves as 

a valuable tool for stakeholders ranging from 

researchers and engineers to policymakers, 

facilitating sustainable water resource 

management strategies tailored to local 

hydrological conditions. 
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2.2.4. Model calibration and validation 

The development and evaluation of hydrological 

models involve critical phases of calibration and 

validation, essential for ensuring the accuracy 

and reliability of model predictions. Calibration 

focuses on refining model parameters to closely 

align simulated outputs with observed data, while 

validation verifies the model's performance under 

conditions not used during calibration. In this 

study, the MIKE SHE model underwent 

meticulous calibration and validation processes 

using streamflow data from the Abelity gauge 

station. Calibration spans from 1990 to 2004 and 

included sensitivity analysis to assess how 

adjustments to parameters like micro-pores 

bypass flow ( 𝐵𝑐 ), Manning’s roughness 

coefficient (n), drainage depth (DD), Saturated 

hydraulic conductivities ( 𝐾𝑠) and Drainage time 

(𝐷𝑡), influenced model simulations. Adjustments 

were made within reasonable ranges sourced 

from manuals, a global digital soil map, and the 

SWAT database, given the limited local data 

availability. 

Following the parameter adjustments, the model's 

performance was validated using independent 

data from 2005 to 2014. Both manual and 

automatic calibration methods were employed to 

compare monthly streamflow outputs from the 

model with observed data, ensuring an accuracy 

assessment. The sensitivity analysis conducted 

with the MIKE SHE model not only enhances 

understanding of hydrological processes but also 

enhances model precision by pinpointing 

influential parameters. This analysis aids 

stakeholders, including researchers, engineers, 

and policymakers, in making informed decisions 

about water resource management, flood 

mitigation, and ecosystem conservation tailored 

to specific local hydrological conditions. 

 

2.2.5. Model statistical evaluation  

Evaluating the performance of hydrological 

models involves comparing simulated outputs 

with observed data to assess how accurately a 

model reproduces hydrological processes 

(Moriasi et al., 2007). For this study, we 

statistically compared observed flow 

measurements from gauging stations with 

simulated flows from the MIKE SHE model. This 

approach is a standard and essential step for 

validating hydrological models (Butts et al., 

2004). We employed several standard metrics to 

evaluate the model's performance, each providing 

a different insight into its accuracy and reliability. 

These metrics included the Nash-Sutcliffe 

Efficiency (NSE), which assesses the model's 

predictive skill relative to the mean of the 

observed data (Nash & Sutcliffe, 1970); the 

correlation coefficient (R), which measures the 

linear relationship between observed and 

simulated flows; and the Root Mean Square Error 

(RMSE), which quantifies the average magnitude 

of the errors (Moriasi et al., 2007). Together, 

these metrics allowed for a comprehensive and 

robust evaluation of the model's ability to 

reproduce the catchment's hydrological behavior. 

The Nash-Sutcliffe Efficiency (NSE) is a widely 

used statistic that measures how well simulated 

data represent observed data variability. Values 

for NSE range from negative infinity to 1, with 

values close to 1 indicating a better match 

between simulated and observed data, a critical 

standard for model validation in hydrology. The 

correlation coefficient (R) is another important 

metric, quantifying the strength and direction of 

the linear relationship between observed and 

simulated data. R values range from -1 to 1, with 

values near 1 signifying a strong positive 

correlation and values near -1 indicating a strong 

negative correlation, while R = 0 suggests no 

linear correlation between data sets (Legates & 

McCabe, 1999). 

Lastly, the Root Mean Square Error (RMSE) 

serves as a measure of precision, calculating the 

average magnitude of differences between 

observed and simulated values. Lower RMSE 

values reflect higher model accuracy, with values 

close to zero indicating minimal errors and a good 

fit. Together, these metrics enable a robust 

evaluation of the MIKE SHE model's ability to 

replicate hydrological processes, offering 

essential insights for water resource management 

and environmental studies (Gupta et al., 2009). 

The formulas for calculating statistical tests for 

hydrological model performance (Equation 3 – 

Equation 5). 

 

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑖 − Ô𝑖)
2𝑛

𝑖=1

 ] (3) 
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𝑅 =
√∑ (𝑆𝑖,𝑡 − Ô𝑖,𝑡)

2𝑛
𝑖=1

∑ (𝑄𝑖,𝑡 − Ô𝑖,𝑡)
2𝑛

𝑖=1

    (4) 

𝑅𝑀𝑆𝐸 =
√∑ (𝑄𝑖,𝑡 − 𝑆𝑖,𝑡)

2𝑛
𝑖=1

𝑛
 

(5) 

 
where, at time step i,  𝑄𝑖 represents the observed 

value,  𝑆𝑖 denotes the simulated value, Ô𝑖 stands 

for the mean of the observed values, 𝑆𝑖,𝑡 indicates 

simulated flow, 𝑄𝑖,𝑡  represents observed flow, 

Ô𝑖,𝑡 is the mean of observations at location i,  “t” 

denotes the ith location at time t, and “n” refers to 

the total number of observations.  

 
2.2.6. Simulation scenario development for 

impact assessment  

Scenario-based simulations were undertaken to 

evaluate the individual and combined impacts of 

climate and land use changes on streamflow, 

utilizing diverse meteorological datasets and land 

use/land cover (LULC) maps. The study assessed 

how climate change-induced variations in 

precipitation patterns, temperature regimes, and 

evapotranspiration rates, derived from different 

periods of meteorological data, interacted with 

alterations in land cover types and land use 

patterns. These changes included the expansion 

of built-up areas, deforestation, agricultural 

intensification, and modifications in water bodies 

(Ortiz et al., 2021). 

To analyze the effects of climate and LULC 

changes on hydrological processes, a fixed-

changing approach was adopted (Yin et al., 

2017). Meteorological data spanning 1990 to 

2020 were divided into three distinct periods: 

1990-2000, 2001-2010, and 2011-2020. These 

periods were then combined with LULC maps 

from three key years: 1990, 2005, and 2020, 

respectively, to develop three core simulation 

scenarios (Table 4). 

This segmentation allowed for the development 

of three representative scenarios to explore the 

combined effects of climate and LULC changes 

on runoff patterns over the study period. By 

comparing these scenarios to the baseline period, 

the study effectively captured the influence of 

integrated climate and land use changes on 

hydrological systems. The results contribute 

valuable insights into how these factors impact 

water resource management strategies, guiding 

future planning and adaptation efforts in the 

context of ongoing climate and land use 

transformations (Shang et al., 2019; Kumar et al., 

2022; Malede et al., 2023). Table 3 presents a 

series of simulated scenarios for the period from 

1990 to 2020, aiming to assess the impacts of 

climate and land use changes on hydrological 

systems.  

 

 
Table 4. Detailed climate and land use/land cover change Scenarios. 

Scenario 
Meteorological 

data 

Land use land 

cover map 
Scenario description 

SC1 1990-2000 1990 
Reference period with baseline climate (1990-2000) 

and land use (1990) conditions 

SC 2 2001-2010 1990 
Assumed scenario with climate change (2001-2010) 

and land use changes (2005) 

SC 3 2011-2020 1990 
Assumed scenario with climate change (2011-2020) 

and land use changes (2020) 

 
Explanation of the Three Core Scenarios: 

1- SC1: This scenario serves as the baseline, with 

meteorological data from 1990-2000 and the 

LULC from 1990, representing the historical 

reference period. 

2- SC2: This scenario assumes climate change 

based on the 2001-2010 period, with the land 

use/land cover map from 2005. It reflects 

hypothetical land and climate changes during this 

period. 

3- SC3: This scenario reflects a more recent 

period (2011-2020) with assumed LULC from 

2020, showing how the most recent climate data 

interacts with the latest land use changes. 
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This simplified approach keeps the focus on three 

distinct periods: the baseline (SC1), a period with 

moderate climate and land use change (SC2), and 

a period with more recent and significant changes 

(SC3). The study employs a specific formula to 

calculate the relative contributions of climate, 

land use/change, and their combined effects on 

hydrological flows, enabling an evaluation of 

differences in simulated mean discharges across 

scenarios. Equations (6) – Equation (8) quantified 

the percentage changes in hydrological flows due 

to the separate and combined effects of climate, 

land use, and land cover (LULC) changes (Kumar 

et al., 2022). 

 

∆𝑞𝑖𝑠𝑜,𝐶𝑙𝑖𝑚𝑎𝑡𝑒 = (
𝑆𝐶2 − 𝑆𝐶1

𝑆𝐶 1
)

× 100 

(6) 

∆𝑞𝑖𝑠𝑜 ,𝐿𝑈𝐿𝐶 = (
𝑆𝐶 4 − 𝑆𝐶 1

𝑆𝐶 1
)

× 100 

(7) 

∆𝑞𝐶𝑜𝑚𝑏 = (
𝑆𝐶 5 − 𝑆𝐶 1

𝑆𝐶 1
) × 100 (8) 

 
where, ∆𝑞 represents the change in annual runoff 

simulated during the effects of climate, LULC, 

and combined on hydrological processes.  

∆𝑞𝐶𝑜𝑚𝑏 = combined impact  

 

3. Results and Discussion 

3.1. Detection of land use and land cover 

changes 

The analysis of land use and land cover (LULC) 

changes in the Upper Omo Gibe Basin from 1990 

to 2020 reveals significant transformations driven 

by agricultural expansion, urbanization, and 

hydropower development. The historical LULC 

maps (Figure 3a–3c) illustrate these changes, 

while Table 4 quantifies the extent and percentage 

shifts in different land cover categories over three 

decades. 

A key observation from the study is the 

substantial decline in forest and shrub land areas. 

Forest cover decreased from 17.9% in 1990 to 

8.92% in 2020, while shrub land declined from 

13.81% to 2.78% during the same period. These 

losses were primarily driven by agricultural 

expansion and settlement growth, as agricultural 

land increased from 66.09% in 1990 to 84.43% in 

2020. Population growth and economic activities 

have led to the conversion of natural vegetation 

into cropland and built-up areas, significantly 

altering the hydrological balance of the basin 

(Derebe et al., 2022; Lukas et al., 2023). Studies 

by Belay & Mengistu (2021) and Gitima et al. 

(2023) confirm that agricultural expansion is the 

primary driver of land cover change in Ethiopia’s 

river basins, causing notable reductions in forest 

cover and biodiversity. 

Another notable change is the expansion of water 

bodies, which grew from 0.39% (131.22 km²) in 

1990 to 1.06% (353.89 km²) in 2020, an increase 

of approximately 169.69%. This expansion is 

primarily attributed to the construction of the 

Gibe-I, Gibe-II, and Gibe-III hydropower dams. 

These reservoirs have substantially increased the 

surface water storage capacity in the basin, 

influencing streamflow dynamics and regional 

water availability (Taye et al., 2018; Hussen et al., 

2021). The impoundment of water in these 

hydropower projects has not only contributed to 

the observed increase in water bodies but has also 

altered downstream hydrological processes by 

regulating flow regimes and modifying seasonal 

discharge patterns (Woldesenbet et al., 2020). 
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a) b) 

 
c) 

Figure 3. a, b, and c refer to land use and land cover distributions for the years 1990, 2005, and 

2020, respectively. 

Table 5 provides a detailed breakdown of the 

percentage changes in different LULC classes. 

Agricultural land remains the dominant land use, 

while forest and shrub land continue to decline. 

The steady rise in settlement areas (from 1.01% 

in 1990 to 1.83% in 2020) highlights the impact 

of human activities on landscape transformation 

(Malede et al., 2023). These LULC changes have 

profound implications for hydrological 

processes, particularly in terms of runoff 

generation, evapotranspiration, and groundwater 

recharge. The expansion of cropland and urban 

areas has likely contributed to increased surface 

runoff and reduced infiltration rates, exacerbating 

flood risks in certain regions (Shang et al., 2019; 

Kumar et al., 2022). Meanwhile, the rise in water 

bodies due to hydropower developments 

underscores the role of large-scale infrastructure 

projects in reshaping the basin’s hydrological 

characteristics (Teshome & Zhang, 2019). 

Overall, these findings emphasize the need for 

sustainable land and water resource management 

strategies to mitigate adverse environmental 

impacts while supporting economic growth and 
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energy production in the region. Integrated land 

and water management approaches such as 

afforestation, soil conservation, and regulated 

urban planning are crucial to balancing 

development needs with ecological sustainability 

(Gebrehiwot et al., 2022; Lukas et al., 2023). 

 

Table 5. Extent and percentage alterations in LULC (1990-2020) 

LULC 

Classes 

1990 2005 2020 Net Change (1990-2020) 

Area(km2) 
Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

 

Percent 

(%) 

 

Bare land 260.46 0.78 193.06 0.58 323.64 0.98 63.18 24.25708 

Settlement 335.43 1.01 585.38 1.76 607.14 1.83 271.71 81.00349 

Shrub land 4,585.57 13.81 1,329.13 4.0 923.93 2.78 -3661.64 -79.8514 

Forest 5946.01 17.9 3934.37 11.85 2962.63 8.92 -2983.38 -50.1745 

Agriculture 21951.6 66.09 26977.48 81.23 28039.06 84.43 6087.46 27.73128 

Water body 131.22 0.39 190.87 0.58 353.89 1.06 222.67 169.6921 

Total 33,210.29 100 33,210.29 100 33,210.29 100   

3.2 Assessment of the accuracy of classified 

LULC 

The classified LULC data were found to be 

highly accurate, validating the reliability of the 

data utilized in this study. Ensuring high accuracy 

is crucial as it underpins the analyses and 

conclusions regarding the impacts of land use and 

climate change on runoff flow in the upper Omo 

Gibe reservoir catchment. The overall accuracy 

rates for the LULC were 90.76% for 1990, 

91.06% for 2005, and 92.24% for 2020, 

surpassing the minimum threshold of 85% (Lu & 

Weng, 2007; Nath et al., 2014; Congalton & 

Green, 2019). Additionally, the Kappa 

coefficients indicated the strength of agreement 

between the classified LULC data and the 

reference data were noted as 0.89 for 1990, 0.88 

for 2005, and 0.89 for 2020. These high values 

reflect a robust and almost perfect agreement, 

confirming the classification method's reliability. 

This level of accuracy is vital for assessing the 

hydrological impacts of land use and climate 

change, providing a solid empirical foundation 

for the study's findings related to runoff flow 

changes (Table 6).  

 

Table 6. Accuracy assessment of LULC map classification of 1990, 2005, and 2020 

Land use classes 

LULC map of 1990 LULC map of 2005 LULC map of 2020 

Producer 

accuracy  

(%) 

User’s 

accuracy 

(%) 

Producer 

accuracy  

(%) 

User’s 

accuracy 

(%) 

Producer 

accuracy  

(%) 

User’s 

accuracy 

(%) 

Bare land 95 88 88 92 85 88 

Settlement 100 75 100 100 100 100 

Shrub land 94 86 87 94 94 97 

Forest 100 85 90 100 86 100 

Agricultural land 90 100 92 85 90 93 

Water body 91 95 100 90 100 100 

Overall accuracy 

(%) 
90.76 91.06 92.24 

Kappa statistic 

(%) 
0.89 0.88 0.89 

 
3.3 Assessment of the MIKE SHE Model  

To ensure accurate simulation of runoff flow 

dynamics in the study area, the MIKE SHE model 

underwent thorough calibration and validation 

using observed hydrological data, including 

streamflow measurements. Calibration involved 

fine-tuning model parameters to minimize 

differences between observed and simulated 

hydrological variables. Validation assessed the 
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model's reliability using independent datasets. 

The split-sample calibration-validation method 

was employed, dividing the data into distinct 

periods for calibration and validation. The model 

was calibrated with monthly streamflow data 

from 1990 to 2004 for the upper Omo catchment. 

Data from 2005 to 2020 were then used for 

validation to evaluate the model's accuracy. 

To prevent over-parameterization, which can 

complicate the model, only a limited number of 

parameters were adjusted during calibration. This 

approach is particularly crucial for a distributed 

model like MIKE SHE, where balancing model 

complexity with parameter manageability is key 

to ensuring robust and reliable simulations. The 

calibration process involved fine-tuning several 

parameters, including the surface roughness 

coefficient or Manning's (M), micro pores by-

pass flow (𝐵𝑐 ), drainage depth (DD), Saturated 

hydraulic conductivities ( 𝐾𝑠), and Drainage time 

( 𝐷𝑡 ). The default and adjusted values are 

presented in Table 6.   

Analysis showed that Manning's M and hydraulic 

conductivity were the most critical parameters 

influencing the hydrograph. According to Paudel 

& Benjankar (2022), these parameters 

significantly impact surface runoff, necessitating 

precise calibration and validation for accurate 

hydrological modeling and effective water 

resource management. For instance, as Manning's 

M increases, overland flow speed rises, while 

subsurface drainage flow decreases. Micropore 

bypass flow significantly influences runoff 

dynamics by allowing water to quickly move 

through small channels in the soil, bypassing the 

slower process of matrix flow. This rapid 

movement can lead to increased surface runoff 

and altered hydrograph responses. Drainage time 

and depth also moderately affect simulated 

discharge by determining how quickly water can 

percolate through the soil and contribute to 

subsurface flow. Studies, including those by 

Vázquez et al. (2002), Sahoo et al. (2006a, 

2006b), Zhang et al. (2008), Loliyana & Patel 

(2018), and Aredo et al. (2021), have consistently 

identified the surface roughness coefficient and 

hydraulic conductivity as critical parameters 

impacting surface runoff. These studies highlight 

that precise calibration of these parameters is 

essential for accurate hydrological modeling and 

effective water resource management. Surface 

roughness, represented by Manning's coefficient, 

influences the velocity of overland flow, while 

hydraulic conductivity controls the infiltration 

rate and subsequent subsurface flow, both crucial 

for simulating the hydrological response 

accurately. 

Saturated zone hydraulic conductivities play a 

vital role in influencing both streamflow and base 

flow by governing water movement in both 

vertical and horizontal directions within the 

subsurface. Vertical hydraulic conductivity is 

critical in determining the rate at which water 

infiltrates deeper into the aquifers, facilitating 

groundwater recharge. This downward 

movement is essential for sustaining base flow, 

particularly during dry periods when 

groundwater contributes to streamflow. 

Conversely, horizontal hydraulic conductivity 

primarily influences base flow, as it controls the 

lateral movement of water through soil and rock 

layers. Unlike vertical conductivity, horizontal 

conductivity has minimal effect on surface runoff 

due to the sloping topography of the study area, 

which reduces its impact on surface water flow 

dynamics. 

To improve the fidelity of model outputs relative 

to observed data, hydrogeological parameters 

were carefully calibrated and optimized. This 

precise calibration allowed the model to produce 

a realistic representation of total discharge. 

Parameters such as macropore bypass flow, 

drainage time, and drainage depth were adjusted 

primarily to reduce computational simulation 

time without compromising the accuracy of 

surface water simulation. These factors are 

especially relevant during wet soil conditions, 

where they facilitate the movement of water into 

subsurface layers, thereby promoting subsurface 

flow while minimally affecting surface runoff 

dynamics (Guzha et al., 2018). This 

comprehensive approach helps ensure the 

hydrological model accurately reflects the natural 

hydrological processes, accounting for both 

subsurface and surface water interactions. 

For the calibration process, the observed monthly 

streamflow data at the Abelity gauging station 

were compared with the streamflow simulated by 

the MIKE SHE model, as shown in Figures 4 and 

5. The model was run for the period from 1990 to 
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2000, utilizing land use data from 1990. Figure 4 

illustrates that the peak values of the simulated 

monthly streamflow align closely with the 

observed values, despite some differences in 

magnitudes. The satisfactory R-value of 0.82 and 

the NSE model efficiency of 0.83, as presented in 

Table 7, indicate a strong correspondence 

between the observed and simulated streamflow. 

This demonstrates that the MIKE SHE model 

produced reliable results for the watershed's 

monthly discharge, validating its application for 

further analysis. The model showed satisfactory 

performance during both the calibration and 

validation phases, with a good match between 

observed and simulated streamflow values. 

Figure 5 further reveals that for lower observed 

streamflow values, the simulated streamflow 

values are uniformly distributed along a one-to-

one line, signifying a high level of accuracy. 

However, for higher discharge values, the model 

slightly underestimated the simulated values, 

indicating minor discrepancies in replicating 

peak flow events. 

 
Table 7. Calibrated values for sensitive parameters in the MIKE SHE model used for simulation. 

S.no Parameters description Unit Range value Fitted value 

1 Manning’s number (M)  M1/3/s 4.0-25.0 10.0 

2 Micro pores by-pass flow (𝐵𝑐) - 0.3-0.8 0.7 

3 Drainage depth (DD) m 1.0-1.5 1.1 

4 Saturated hydraulic conductivities ( 𝐾𝑠) m/s 1x10-6 – 1x10-3 8.73 ×10-6 

5 Drainage time (𝐷𝑡) s-1 3x10-6 – 5x10-6 4× 10-6 

 
Figure 4. Observed and simulated streamflow data were compared for model calibration (1990-

2004) 

The peak of the simulated streamflow being 

consistently lower than the observed streamflow 

can be attributed to several potential factors, 

particularly related to model calibration and the 

representation of hydrological processes. The 

quality and resolution of the input meteorological 

data (such as precipitation and temperature) can 

significantly impact the accuracy of peak flow 

simulations. If the rainfall data is too coarse in 

either space or time, the model may miss 

localized, intense rainfall events that contribute to 

higher peaks. Additionally, missing or inaccurate 

high-intensity rainfall data can lead to an 

underestimation of peak flow. 
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Figure 5. Scatter plot comparing observed and simulated streamflow during the calibration period 

(1990–2004). 

Table 7 presents the statistical evaluation 

illustrating a strong relationship between 

observed and simulated streamflow for the years 

analyzed. During the model calibration period 

(1990–2004), the correlation coefficient (R) was 

0.82, and the Nash-Sutcliffe Efficiency (NSE) 

was 0.83, indicating a strong match between the 

observed and simulated streamflow data. For the 

validation period (2005–2020), the correlation 

coefficient and NSE were 0.81 and 0.80, 

respectively. These values demonstrate a close 

agreement between the observed and simulated 

monthly streamflow data during both periods 

(Moriasi et al., 2007), affirming the model's 

reliability. The high correlation coefficients and 

NSE values suggest that the model can accurately 

simulate streamflow patterns, thereby justifying 

its use for further hydrological analysis in the 

watershed. These results underscore the model's 

robustness in capturing the dynamics of 

streamflow, essential for effective water resource 

management and planning.  To further validate 

the model, the calibrated MIKE SHE model was 

tested with a new dataset. This involved using 

observed streamflow data from 2005 to 2014 and 

corresponding land use data from 2005 for the 

upper Omo catchment. The results of this 

validation are presented in Figures 6 and 7. These 

figures illustrate a strong agreement between 

observed and simulated monthly streamflow, 

indicating the model's reliability in predicting 

streamflow for this period and region. Figure 7 

shows that the majority of the data points for 

lower discharge values are uniformly distributed 

around the 1:1 line, suggesting a high degree of 

accuracy. 

Table 8. Statistical evaluation of observed 

versus simulated monthly streamflow data 

during both the calibration and validation 

periods 

Period Statistical index Value 

Calibration(1990-2004) 

NSE 0.83 

R 0.82 

RMSE 2.69 

Validation (2005-2014) 

NSE 0.80 

R 0.81 

RMSE 3.70 

 
However, for higher discharge values, the 

simulated streamflow slightly underestimates the 

observed values, as the points fall below the 1:1 

line. This indicates that while the model 

accurately captures overall flow patterns, it tends 

to underestimate peak flows slightly. The 

successful calibration and validation of the MIKE 

SHE model demonstrate its robustness and 

suitability for assessing the impacts of land use 

and land cover (LULC) changes and climate 

change on water balance components. This model 

can thus be effectively used to predict future 

hydrological responses under various scenarios, 

providing valuable insights for water resource 

management and planning.  
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Figure 6. Observed and simulated streamflow values for model validation (2005-2014) 

  
Figure 7. Scatter plot depicting the comparison between observed and simulated streamflow during 

the validation period (2005–2014). 

 
3.4 Impacts of Climate and Land Use/Land 

Cover Variability on Hydrological Processes 

The combined effects of climate variability and 

land use/land cover (LULC) changes on 

hydrological processes in the Upper Omo Gibe 

catchment were assessed using the MIKE SHE 

model over a three-decade period (1990–2020). 

This study aimed to investigate how these factors 

influence streamflow, subsurface flow, and 

evapotranspiration across different climatic and 

land use conditions (Table 8). By integrating 

observed climate data with LULC maps, the 

model successfully captures long-term 

hydrological trends and the interactions between 

surface and subsurface water dynamics. These 

findings align with previous studies indicating 

that climate change and anthropogenic land use 

modifications significantly alter hydrological 

cycles, often leading to increased surface runoff, 

reduced groundwater recharge, and shifts in 

evapotranspiration patterns (Beven & Freer, 

2001; Wagner & Gupta, 2005). 

The results of this analysis demonstrate that 

streamflow generally increased in the later 

periods (SC3) due to reduced vegetation cover 

0

2000

4000

6000

8000

10000

12000

14000

Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14

S
tr

ea
m

fl
o
w

 (
m

3
/s

)

Month
Observed Simulated

y = 0.8542x - 11.556

R² = 0.8849

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000 12000 14000

S
im

u
la

te
d
 s

tr
ea

m
fl

o
w

 (
m

3
/s

)

Observed streamflow (m^3/s)

Linear (Regression line)

        Linear 1:1 line 



  Modeling streamflow dynamics under climate and land use shifts using MIKE SHE in……              137 

and heightened surface runoff, while both 

subsurface flow and evapotranspiration showed a 

declining trend due to urbanization and reduced 

infiltration capacity (Chen et al., 2017). These 

patterns are consistent with the findings of Todini 

(2008), who emphasized that reductions in 

vegetation cover lead to increased direct runoff 

and decreased soil moisture retention, 

subsequently affecting base flow contributions to 

river systems. Furthermore, studies by Li et al. 

(2019) and Zhang et al. (2021) highlight that 

urbanization and deforestation exacerbate 

hydrological extremes, leading to more frequent 

high-flow events and diminishing groundwater 

recharge rates. 

This structured, scenario-based analysis offers 

valuable insights into the hydrological 

consequences of climate and land use changes, 

underscoring the importance of integrated 

watershed management strategies for the region. 

Effective land use planning and climate 

adaptation strategies, as suggested by Gupta et al. 

(2000) and Babovic & Bojkov (2001), are crucial 

in mitigating adverse hydrological impacts and 

ensuring sustainable water resource management 

in vulnerable basins such as the Upper Omo Gibe. 

 

Table 9. Mean annual hydrological components are assessed across varying land use classifications 

under different climatic conditions. 

Scenarios Climate Land use 
Precipitation 

(mm/yr) 

Streamflow 

(mm/yr) 

Subsurface 

flow 

(mm/yr) 

Evapotranspiration 

(mm/yr) 

SC1 1990-2000 1990 1489.2 3475 425.0 130.0 

SC1 2001-2010 1990 1590.8 3905 445.0 145.0 

SC1 2011-2020 1990 1457.3 3920 400.0 120.0 

SC2 1990-2000 2005 1489.2 3575 395.0 140.0 

SC2 2001-2010 2005 1590.8 3975 375.0 138.0 

SC2 2011-2020 2005 1457.3 4450 355.0 110.0 

SC3 1990-2000 2020 1489.2 3825 300.0 100.0 

SC3 2001-2010 2020 1590.8 3925 285.0 120.0 

SC3 2011-2020 2020 1457.3 4625 275.0 100.0 

3.5 Impact of climate change on streamflow 
Climate change significantly influences 

streamflow dynamics by altering precipitation 

patterns, temperature regimes, and 

evapotranspiration rates. In the Upper Omo Gibe 

catchment, these climatic variations have led to 

substantial changes in surface runoff, subsurface 

flow, and overall hydrological responses over the 

past three decades. Using the MIKE SHE model, 

this study evaluates how fluctuations in climate 

drive changes in streamflow and related 

hydrological components under different land use 

conditions, providing valuable insights for water 

resource management and adaptation strategies. 

The analysis of mean annual precipitation and 

hydrological components under different climatic 

periods (1990–2000, 2001–2010, and 2011–

2020) across scenarios SC1, SC2, and SC3 

reveals distinct hydrological responses (Table 9). 

SC1, which represents the 1990 land use under 

different climate conditions, shows that an 

increase in precipitation from 1489.2 mm to 

1590.8 mm between the first and second periods 

results in a significant rise in streamflow (from 

3475 mm to 3905 mm). However, a subsequent 

decrease in precipitation to 1457.3 mm (2011–

2020) still leads to a rise in streamflow (3920 

mm), suggesting that factors beyond 

precipitation, such as changes in infiltration rates 

and land use dynamics, may be influencing runoff 

processes. Additionally, subsurface flow follows 

a fluctuating trend, increasing from 425.0 mm to 

445.0 mm before dropping to 400.0 mm in the 

final period, while evapotranspiration shows a 

similar decline, from 130.0 mm to 120.0 mm. 

These patterns align with previous studies 

indicating that climate-induced variations in 

hydrology are influenced not only by 

precipitation but also by shifts in land use and 

vegetation cover (Beven & Freer, 2001; Gupta et 

al., 2000). 
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In SC2, which represents the 2005 land use under 

the same climatic conditions, the results indicate 

that land cover changes alter hydrological 

responses. Streamflow increases from 3575 mm 

(1990–2000) to 3975 mm (2001–2010) and then 

rises sharply to 4450 mm (2011–2020), despite a 

decrease in precipitation in the final period. The 

decline in subsurface flow (from 395.0 mm to 

355.0 mm) and evapotranspiration (from 140.0 

mm to 110.0 mm) highlights a shift in 

hydrological partitioning, where more water 

contributes to surface runoff due to reduced 

infiltration capacity (Locatelli et al., 2017). This 

is consistent with findings by Todini (2008) and 

Zhang et al. (2021), who noted that land use 

changes, such as deforestation and urban 

expansion, tend to enhance surface runoff while 

reducing groundwater recharge. 

SC3, representing the 2020 land use, exhibits the 

most pronounced changes, with streamflow 

increasing dramatically from 3825 mm (1990–

2000) to 4625 mm (2011–2020), despite a slight 

decline in precipitation. The subsurface flow 

experiences a significant reduction, from 300.0 

mm to 275.0 mm, while evapotranspiration 

continues to decline, reaching its lowest value of 

100.0 mm in the most recent period. These results 

reinforce the argument that changes in land cover 

amplify the impacts of climate variability, as 

reduced vegetation cover and increased 

impervious surfaces lead to higher runoff and 

lower groundwater recharge (Li et al., 2019; 

Wagener & Gupta, 2005). The declining trend in 

evapotranspiration also suggests that reduced 

vegetation density and soil moisture availability 

are limiting atmospheric water loss, a pattern 

observed in studies on climate-induced changes 

in hydrology (Babovic & Bojkov, 2001). 

The MIKE SHE model has proven effective in 

capturing these climate-driven hydrological 

changes, with model performance evaluations 

based on criteria established by Moriasi et al. 

(2007) confirming its ability to simulate 

watershed dynamics with high accuracy. The 

results of this study reinforce existing evidence 

on the interplay between climate change and 

hydrology, further supporting the necessity for 

proactive management strategies to mitigate 

climate-induced hydrological impacts (Gries et 

al., 2019). Given the increasing variability in 

precipitation and temperature, integrating 

climate-resilient water management policies will 

be crucial for ensuring sustainable water resource 

availability in the Upper Omo Gibe catchment 

and beyond. 

 

3.6 Impact of Climate and Land Use/Land 

Cover Changes on Hydrological Processes 

The combined and separate effects of climate 

variability and land use/land cover (LULC) 

changes significantly influence hydrological 

processes, altering surface runoff, subsurface 

flow, and evapotranspiration (ET) in the Upper 

Omo Gibe Basin. Figure 8 highlights the 

spatiotemporal impacts of these factors on 

hydrological components, showing distinct 

variations in surface runoff, subsurface flow, and 

ET across different periods. 

 

3.6.1 Variability in Surface Runoff 

Surface runoff exhibited a notable increase of 

10.29% during 2001–2010, coinciding with an 

increase in mean annual precipitation from 

1489.2 mm (1990–2000) to 1590.8 mm (2001–

2010) (Figure 8a). However, the subsequent 

period (2011–2020) experienced a 2.38% decline 

in surface flow, as precipitation decreased to 

1457.3 mm. This trend suggests that climate-

driven changes in precipitation patterns directly 

influence streamflow generation, consistent with 

previous studies indicating that increased rainfall 

enhances direct runoff, while reduced 

precipitation limits water availability for surface 

flow (Beven & Freer, 2001; Todini, 2008). 

In addition to climate variability, LULC changes 

played a crucial role in modifying runoff 

responses. Over the past three decades, 

agricultural expansion and deforestation have 

significantly altered infiltration capacities, 

leading to increased runoff generation. Studies by 

Derebe et al. (2022) and Lukas et al. (2023) 

confirm extensive agricultural expansion and 

significant losses in shrub land and forest cover, 

which reduce infiltration rates and exacerbate 

runoff generation. Similar findings in the Gilgel 

Gibe catchment, a sub-basin of the Upper Omo 

Gibe Basin, indicate that deforestation and land 

use modifications amplify peak flows and flood 

risks, intensifying regional water resource 
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management challenges (Chaemiso et al., 2016; 

Orkodjo et al., 2022). 

 

3.6.2 Changes in Subsurface Flow 

Subsurface flow followed a similar trend, 

increasing by 7.43% during 2001–2010, 

reflecting enhanced groundwater recharge due to 

increased precipitation. However, a 10.39% 

decline in subsurface flow during 2011–2020 was 

observed, aligning with reduced precipitation and 

extensive land cover modifications (Figure 8b). 

The long-term decline in shrub land (-79.85%) 

and forest cover (-50.17%) (Table 5) has led to 

diminished infiltration rates, further reducing 

groundwater recharge. This pattern aligns with 

findings by Mekuria (2022) and Gebremichael et 

al. (2024), who reported that land cover changes 

in the basin, particularly deforestation and 

expansion of agricultural land, have significantly 

reduced groundwater contributions to 

streamflow. 

 

3.6.3 Evapotranspiration Dynamics 

Evapotranspiration (ET) experienced an increase 

of 10.03% during 2001–2010, corresponding to 

higher precipitation and improved vegetation 

water uptake. However, a 21.65% decrease in ET 

was recorded during 2011–2020, likely due to 

declining vegetation cover and soil moisture 

availability (Figure 8c). The substantial 

reductions in shrub land and forest cover (Table 

5) contributed to lower ET rates, as vegetative 

transpiration plays a crucial role in regulating 

atmospheric moisture fluxes. Li et al. (2019) and 

Wagener & Gupta (2005) similarly reported that 

deforestation-driven reductions in ET result in 

decreased soil moisture retention and altered 

local climate conditions, further exacerbating 

hydrological changes. 
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b) 

 
c) 

 
Figure 8. The impacts of both separate and combined climate and LULC changes, a) Surface 

runoff; b) subsurface flow; c) evapotranspiration 

3.7 Impact of Land use change on streamflow 
Land use and land cover (LULC) changes play a 

significant role in altering hydrological 

processes, affecting surface runoff, infiltration, 

evapotranspiration, and groundwater recharge. 

The analysis of various land use scenarios in 

Table 8 highlights how deforestation, agricultural 

expansion, and urbanization have transformed the 

hydrological dynamics of the Upper Omo Gibe 

catchment. The results indicate that these 

anthropogenic activities have led to substantial 

modifications in streamflow, emphasizing the 

importance of sustainable land management in 

mitigating hydrological alterations. 

 

Hydrological Impacts of Land Use and Land 

Cover Changes on Streamflow and Runoff 

Dynamics 

An analysis of land use and land cover (LULC) 

changes reveals a profound impact on the 

catchment's hydrological components across 

various periods. When compared to the 1990 
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baseline scenario (SC1), streamflow decreased by 

4.72% in the 2005 scenario (SC4) and by 10.65% 

in the 2020 scenario (SC7). This corresponded 

with a long-term reduction in subsurface flow, 

which fell by 9.7 mm in 2005 and 40 mm in 2020. 

These findings underscore that LULC changes, 

driven primarily by deforestation and 

urbanization, are key factors in altering 

streamflow patterns. 

During the periods from 2001–2010 and 2011–

2020, a significant increase in surface runoff was 

observed, rising by 2.14% and 12.72%, 

respectively. In contrast, subsurface flow 

declined by 6.03% and 6.82%, while 

evapotranspiration decreased by 0.75% and 

5.49% (Figures 8a and 8b). The expansion of 

agricultural and settlement areas has been the 

primary driver of this trend. A LULC analysis 

showed that between 1990 and 2020, agricultural 

land expanded by 27.73% and settlement areas 

grew by an alarming 81.0%. As natural 

vegetation, such as forests and shrub lands, was 

converted to croplands and urban areas, the land's 

capacity to retain and absorb rainfall diminished. 

This transformation has shifted the catchment's 

hydrological response, resulting in increased 

peak flows, reduced groundwater recharge, and 

higher flood risks. 

The observations are consistent with a growing 

body of research showing that the expansion of 

agricultural and settlement areas leads to 

increased impervious surfaces, which in turn 

reduces soil infiltration and exacerbates surface 

runoff (Kim et al., 2002; Dibaba et al., 2020; 

Kumar et al., 2022). Furthermore, the reduction 

of natural water bodies, forests, and shrub lands 

contributes to a decline in subsurface flow and 

evapotranspiration, thereby fundamentally 

altering the catchment’s overall water balance 

(Mekonnen et al., 2018; Malede et al., 2023). 

 

3.8 Combined Impacts of Climate and Land 

Use Change 
The combined effects of climate change and land 

use/land cover (LULC) alterations on runoff 

dynamics, water resource availability, and 

ecosystem resilience highlight the intricate 

interactions between these two factors (Gelfan et 

al., 2017). Climate variability and land use 

modifications significantly influence 

hydrological components, affecting surface 

runoff, subsurface flow, and evapotranspiration 

patterns. By integrating climate data from 1990 to 

2020 with corresponding LULC maps, the study 

examined the interplay between these drivers and 

their collective impact on streamflow within the 

Upper Omo Gibe Basin. 

 

Hydrological Responses to Climate and Land 

Use Interactions 

The findings indicate that during 2001–2010 

(SC1 to SC2), surface flow increased by 446.5 

mm, corresponding with a 101.6 mm rise in 

precipitation, a 3.7 mm increment in subsurface 

flow, and a 13.3 mm increase in 

evapotranspiration. However, from 2011–2020 

(SC2 to SC3), while streamflow further increased 

by 605.3 mm, precipitation declined by 133.5 

mm, subsurface flow decreased by 100.2 mm, 

and evapotranspiration dropped by 39.8 mm. 

These results suggest that although precipitation 

initially supported increased runoff and 

evapotranspiration, the subsequent reduction in 

precipitation combined with LULC changes led 

to a marked shift in hydrological components, 

notably decreasing subsurface flow and 

evapotranspiration. 

The absence of a linear trend in runoff responses 

across the scenarios highlights the complex 

interplay between climate variability and LULC 

changes (Nigusie & Dananto, 2021). While the 

overall effect resulted in increased streamflow, 

the magnitude and direction of changes in 

subsurface flow and evapotranspiration varied. 

The increasing surface runoff (12.63% from 

2001–2010 and 15.40% from 2011–2020) and 

declining subsurface flow (ranging from -0.94% 

to -10.30%) reinforce the notion that 

deforestation, urban expansion, and declining 

precipitation jointly contribute to increased 

surface runoff and reduced groundwater 

recharge. 

 

3.9 Runoff to Rainfall Ratio and Dryness 

Index 

The runoff-to-rainfall ratio (RR) and the dryness 

index (ET/P) provide key insights into how 

climatic and land cover transformations shape 

hydrological balance (Figure 9). The analysis 

indicates that from 1990–2000 to 2011–2020, the 
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RR increased by 34%, while ET/P declined by 

1.6%, reflecting reduced moisture availability 

and higher runoff generation. Over this period, 

precipitation declined by 2.14%, yet runoff 

increased by 12.8%, and evapotranspiration 

dropped by 24.62%. These findings confirm that 

land use shifts, particularly deforestation and 

expansion of agricultural and settlement areas, 

exacerbated surface runoff while reducing 

evapotranspiration and infiltration. Similar trends 

have been documented in prior studies, indicating 

the dominant role of LULC changes in modifying 

runoff ratios and evapotranspiration balances 

(Mengistu & Sorteberg, 2012; Gebremicael et al., 

2017; Kumar et al., 2022; Malede et al., 2023). 

 

 

 

Figure 9. Ratios of runoff to rainfall (RR) and the dryness index (ET/P) analyzed for the period 

1990 – 2020. 

 

 
3.10 Implications for Water Resource 

Management 

The Upper Omo Gibe Basin's hydrological 

processes are significantly altered by climate and 

LULC changes, evidenced by increased surface 

runoff, reduced subsurface flow/ET, and 

disrupted water cycling. MIKE SHE model 

simulations (validated via Moriasi et al., 2007 

criteria) highlight risks like groundwater 

depletion, soil erosion, and flash floods. Adaptive 

strategies (e.g., afforestation, sustainable land 

use, soil conservation) are critical to mitigate 

impacts, aligning with findings by Chaemiso et 

al. (2016), Mekuria (2022), and Orkodjo et al. 

(2022). Integration of hydrological models into 

land-use planning and policy frameworks is 

urged to enhance climate resilience and water 

sustainability. Collaborative efforts among 

policymakers, researchers, and communities are 

essential for balancing basin hydrology amid 

ongoing environmental changes. 

 

 

4. Conclusions 

The impact of climate and land use/land cover 

(LULC) changes on streamflow in the Upper 

Omo Gibe Basin has resulted in significant shifts 

in hydrological patterns. The expansion of 

agricultural and urban areas has reduced soil 

infiltration and increased surface runoff, leading 

to more frequent and severe flooding events. In 

contrast, the reduction of forest and shrub land 

areas has diminished subsurface flow and 

evapotranspiration rates, disrupted the 

hydrological balance and negatively affected 

groundwater recharge. 

Further complicating the situation, climate 

change has altered precipitation and temperature 

patterns, influencing streamflow volumes. This 

demonstrates the intricate interplay between 

natural processes and human activities in shaping 

hydrological dynamics. Analyses of the 2001–

2010 and 2011–2020 periods revealed contrasting 

trends in surface and subsurface flows, 

underscoring the need for adaptive water 

management strategies. The MIKE SHE model 

effectively simulated hydrological processes in 
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the catchment, with calibration and validation 

yielding NSE and R² values exceeding 0.80. 

Surface runoff has increased by 2.14% and 

12.72% in the respective decades, while 

subsurface flow decreased by 6.03% and 6.82%, 

and evapotranspiration dropped by 0.75% and 

5.49%. These changes reflect more substantial 

collective effects than individual impacts, driving 

significant hydrological shifts in the region. 

Notably, while subsurface flow and 

evapotranspiration increased during 2001–2010, 

they declined in the 2011–2020 period, signaling 

a negative trend in overall hydrological balance. 

To mitigate the adverse effects of increased 

surface runoff and decreased subsurface flow, it 

is crucial to prioritize sustainable land use 

practices. These include afforestation, 

agroforestry, and the conservation of natural 

vegetation, which can enhance infiltration, 

reduce surface runoff, and support groundwater 

recharge. Furthermore, investing in climate-

resilient infrastructure, such as flood control 

systems and rainwater harvesting, will help 

manage runoff and minimize flood risks. The 

implementation of Integrated Water Resource 

Management (IWRM) strategies is essential for 

adaptive water management, considering the 

combined impacts of climate and LULC changes 

on hydrological dynamics. Ongoing monitoring 

and modeling with tools like MIKE SHE will aid 

in making accurate predictions and informed 

decisions under varying conditions. Engaging 

local communities in sustainable land and water 

practices will foster resilience, contributing to 

long-term environmental sustainability in the 

watershed and ensuring that future generations 

can effectively manage the region's water 

resources. 

 

Modeling Limitations and Future 

Considerations 

While the study provided valuable insights, 

certain limitations should guide future research. 

The model's accuracy is heavily dependent on 

reliable, long-term climate and hydrological 

datasets. The computational demands of the 

MIKE SHE model, particularly for fine-scale 

analysis, also present a constraint on extensive 

simulations. Future efforts should therefore focus 

on enhancing data collection, refining model 

calibration processes, and incorporating more 

detailed representations of LULC changes to 

better capture hydrological responses. 

Based on these findings, several directions are 

recommended for future research. Expanding the 

temporal scope to include future climate 

scenarios would allow for long-term hydrological 

trend projections, providing crucial information 

for proactive water management. Furthermore, 

future studies should incorporate socioeconomic 

factors by linking LULC changes to demographic 

and economic drivers, such as population growth 

and agricultural policies, to gain more holistic 

insights for governance. Finally, fostering 

interdisciplinary collaboration with ecologists 

and policymakers is essential to co-design 

effective and adaptive strategies, such as payment 

for ecosystem services, that can sustainably 

manage the catchment's water resources. 
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