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Abstract 
Understanding how climatic variables influence water yield is crucial for effective watershed management, 

particularly in regions that provide vital hydrological ecosystem services. This study investigates the sensitivity of 

key climatic factors— precipitation, reference evapotranspiration, and seasonality parameters—in modeling water 

yield ecosystem services using the InVEST model within the ecologically significant Talar watershed in northern 

Iran. Furthermore, the research aims to prioritize sub-watersheds based on their specific water yield to support 

ecosystem-based decision-making. Using a time series approach, water yield was modeled for the years 1989, 

2000, and 2014, incorporating biophysical and climatic variables along with land use maps derived from Landsat 

TM and OLI imagery through SVM classification. A sensitivity analysis was conducted using the One-at-a-Time 

(OAT) method, with the year 2014 as the baseline and changes in each climatic factor assessed relative to 1989. 

Sub-watershed prioritization was carried out using specific water yield, defined as water yield per unit area. The 

results showed a declining trend in mean annual precipitation (from 552.6 mm in 1989 to 472.8 mm in 2014) and 

an increasing trend in temperature (from 8.92°C to 10.6°C), alongside a notable spatial shift in rainfall and 

evapotranspiration patterns. Sensitivity analysis revealed that water yield was most responsive to changes in 

precipitation, with a relative sensitivity index (Sr) approximately 0.42, indicating high model responsiveness. 

Reference evapotranspiration and seasonality parameters also exhibited a moderate influence. Prioritization results 

identified northern forested and agricultural sub-watersheds as having the highest specific water yields, 

highlighting their hydrological significance. These findings underscore the dominant role of precipitation 

variability in shaping regional hydrological services and emphasize the importance of spatially explicit watershed 

prioritization for sustainable water resource planning. The approach provides a practical framework for integrating 

ecosystem services into watershed management under climatic uncertainty and land use change, particularly in 

semi-humid regions like the Talar watershed. 
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1. Introduction 

Ecosystem services in watersheds play a vital role 

in regulating hydrological processes such as 

water yield, flood control, groundwater recharge, 

and sediment retention (Petsch et al., 2023). 

These services are essential for ensuring water 

security, maintaining ecological balance, and 

supporting agriculture and human livelihoods, 

particularly in areas vulnerable to climate change 

and land use alterations (Mishra et al., 2021). A 

key ecosystem service integral to the 

hydrological cycle is water yield, a process 

through which ecosystems absorb, store, and 

release water, playing a central role in 

maintaining baseflow in rivers, recharging 

groundwater, and preserving regional 

hydrological balance (Brauman, 2015). This 

service is particularly important in mountainous 

and forested areas, which serve as the primary 

sources of water for downstream watersheds (Li 

et al., 2021a). Assessing water yield requires a 

detailed understanding of influencing factors 

such as precipitation, temperature,  etc. Since 

these variables are subject to change due to 

climate variability and human interventions, 

analyzing their sensitivity within water yield 

modeling is essential for improving prediction 

accuracy and enhancing water resource 

management (Zhang et al., 2021; Norouzzadeh et 

al., 2023). 

The ecosystem service of water yield is one of the 

critical regulating services provided by 

ecosystems, referring to a region’s capacity to 

generate surface water from precipitation (Sharp 

et al., 2018). This service plays a key role in 

supplying water resources for human 

consumption, agriculture, and industry, as well as 

in maintaining ecosystem health. Water yield 

serves as an important indicator in watershed 

management and is particularly vital in arid and 

semi-arid regions, where any changes in 

precipitation patterns or land use can significantly 

impact this service (Daneshi et al., 2021). 

Water yield modeling plays a key role in water 

resource planning by assessing management 

scenarios, monitoring climate change, and 

analyzing land use impacts. It identifies areas 

with high water production or risk of scarcity (Bai 

et al., 2018; Li et al., 2021b). In tools like InVEST 

(Integrated Valuation of Ecosystem Services and 

Tradeoffs), water yield outputs support decisions 

on dam site selection, land restoration, and water 

allocation (Meraj et al., 2022). Water yield is 

influenced by precipitation, vegetation, land use, 

soil properties, topography, and climate. Key 

variables, such as evapotranspiration, soil 

infiltration, and vegetation root depth, affect how 

precipitation becomes runoff or recharges 

groundwater (Sharp et al., 2018). Changes in 

these factors, whether driven by human activity 

or climate change, can significantly shift the 

spatial distribution of water yield within a 

watershed (Aghabeigi et al., 2019; Asgari et al., 

2025). 

The InVEST model, developed by the Natural 

Capital Project, is widely used to assess water 

yield by estimating average annual water 

production across land units using simple yet 

effective input data (Yin et al., 2022; Sharp et al., 

2018). Its Water Yield module applies empirical 

relationships to produce spatially explicit maps 

that support sustainable water management and 

spatial analysis (Hamel et al., 2021). InVEST 

enables evaluation of land use and climate change 

impacts at the watershed scale and comparison of 

management scenarios, making it a practical tool 

for regional planning (Meraj et al., 2022). Its clear 

visual outputs also promote stakeholder 

engagement and participatory decision-making. 

Integrating water yield estimates into 

environmental policy and sustainable 

development strategies can enhance water 

conservation efforts and improve community 

resilience to water-related challenges. 

Sensitivity analysis is essential in ecosystem 

service modeling, especially for key climatic 

variables like precipitation and 

evapotranspiration, which heavily influence 

model outputs such as water yield (Pianosi et al., 

2016). In the InVEST model, precipitation acts as 

the main input, while evapotranspiration 

represents the primary water loss, making both 

critical to yield estimates (Pessacg et al., 2015). 

Errors in these inputs can cause major deviations 

and impact decision-making. Sensitivity analysis 

identifies which variables most affect output 

variability, guiding efforts to improve data quality 

(Iooss and Lemaître, 2015). It also helps predict 

the effects of climate change, supports model 

calibration, and quantifies uncertainty in 
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scenario-based studies (Elleaume et al., 2025). 

Ultimately, it strengthens model reliability and 

supports informed, sustainable water resource 

planning. Sensitivity analysis of input parameters 

in ecosystem service modeling, especially for 

water and watershed management, is essential for 

identifying key variables that impact services like 

water yield, soil erosion, and sediment delivery. 

It helps managers focus data collection on 

influential inputs such as precipitation, 

evapotranspiration, and soil properties, 

improving model accuracy and reducing 

uncertainty. By revealing how changes in factors 

like rainfall or vegetation affect outputs, 

sensitivity analysis supports better planning, such 

as targeting vegetation conservation or climate 

adaptation. It also helps identify critical 

watershed zones for intervention. In climate 

change studies, this analysis enables scenario 

evaluation and ecosystem service sustainability 

assessments, making it a powerful tool for 

adaptive management. Overall, it strengthens 

evidence-based decision-making and enhances 

the effectiveness of water resource planning 

across scales. 

Many studies have been conducted on water yield 

modeling and sensitivity analysis of climatic 

parameters using the InVEST model. Sánchez-

Canales et al. (2012) assessed the sensitivity of 

the InVEST water provisioning model in Spain’s 

Llobregat basin, finding precipitation and 

evapotranspiration critical, while seasonal 

rainfall distribution had little effect. Yang et al. 

(2019) analyzed the InVEST model in a South 

China monsoon catchment, showing 

precipitation’s dominant influence on water yield, 

with proper calibration improving results. Bai et 

al. (2019) studied climate and land use impacts on 

water-related ecosystem services in Kentucky, 

USA, revealing that climate change more 

strongly affected water retention, while land use 

influenced soil and nutrient retention. Zhang et al. 

(2021) examined urbanization effects on 

ecosystem services in China’s Pearl River Delta, 

noting decreased supply and increased demand 

with population density and artificial land cover 

as major drivers. Yohannes et al. (2021) reported 

rising water yield and sediment export in 

Ethiopia’s Beressa watershed due to farmland 

expansion, emphasizing soil and water 

conservation. Yu et al. (2022) found variable 

water yield trends in Northwestern Yunnan, 

China, highlighting precipitation, 

evapotranspiration, vegetation, and terrain as key 

factors. Wu et al. (2022) detected a slight upward 

water yield trend in China’s Weihe River Basin, 

mainly driven by precipitation. Ma et al. (2024) 

concluded that climate change had stronger 

effects than land use on water yield and soil 

conservation in Southwest China, stressing 

climate-adaptive land use planning. Lu et al. 

(2024) revealed deficits in ecosystem services in 

China’s Yangtze River city cluster, calling for 

stricter carbon policies and coordinated land use. 

Finally, Wang et al. (2025) optimized InVEST 

parameters in China’s Qilian Mountains, 

confirming precipitation and evapotranspiration 

as the most sensitive climatic factors, 

highlighting the need for accurate data and 

validation. 

Previous studies highlight precipitation and 

evapotranspiration as key factors affecting the 

InVEST water yield model accuracy. This 

research fills a gap by analyzing these climatic 

sensitivities in the Talar watershed. Using 

localized data and calibration, it adapts the model 

to the Hyrcanian ecosystem and offers a practical 

tool for water resource management in northern 

Iran. This study aims to analyze the sensitivity of 

key climatic factors in water yield modeling 

within the Talar watershed from an ecosystem 

service perspective. Additionally, the research 

seeks to prioritize sub-watersheds according to 

their water production potential. Identifying the 

most sensitive climatic factors is essential for 

better management of ecosystem services, as 

these factors account for a significant portion of 

the variability in water yield across the 

watershed. These objectives will support more 

effective, ecosystem-based water resource 

management in this ecologically important 

region. 

 

2. Materials and Methods 

2.1. Study Area:  

The study was conducted in the Talar watershed, 

Mazandaran Province  of Iran, covering 1,764 

km² on the northern slope of the Alborz 

Mountains. Elevations range from 216 to 3,983 

meters, with an average of 1,980 meters and an 
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average basin slope of 42%. The watershed’s 

main stream runs approximately 100 km in a 

north-south direction (Ruigar et al., 2024).  The 

climate is Mediterranean-like and semi-humid, 

influenced by proximity to the Caspian Sea, the 

Alborz Mountains, and Mediterranean air 

masses. Average annual precipitation is 547 mm, 

evaporation is 446.6 mm, and temperatures range 

from 6.6°C (minimum) to 18.3°C (maximum), 

with a mean of 12.4°C (Gholami et al., 2018).  
The location of the research area in the world, 

Iran, and Mazandaran Province is presented in 

Figure 1. 

 

 
 

 
Figure 1. The location of the study area in the World, Iran, and Mazandaran Province 

 
2.2. Methodology: 

The water yield module in the InVEST model 

estimates the relative contribution of water from 

different parts of the watershed or corresponding 

sub-watersheds using a water balance approach, 

with an emphasis on how land use patterns affect 

annual water yield (Redhead et al., 2016; Sharp 

et al., 2018; Basha et al., 2024; Ocloo, 2025). The 

schematic framework employed in the InVEST 

model for estimating water yield, which is 

provided by Sharp et al (2018), is shown in Figure 

2. 
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Figure 2. The schematic framework employed in the 

InVEST model for estimating water yield (Sharp et 

al., 2018) 

 

This module is based on the curve introduced by 

Budyko and the mean annual precipitation. The 

water yield in each watershed cell is calculated 

according to Equation 1. 

Yxj = (1 − 
AETxj

Px

) ∗ Px (1) 

In this equation, Yxj represents the annual water 

yield, AETxj is the actual evapotranspiration, and 
Px is the annual precipitation, all corresponding to 

each cell with land use type j (Yang et al., 2019). 

The ability of InVEST to simplify hydrological 

processes and apply at various spatial scales 

makes it highly suitable for water resource 

management planning and assessing the impacts 

of climate change and land use alterations. 

Furthermore, InVEST plays a key role in 

ecosystem services analysis and supports 

sustainable environmental decision-making. This 

study involved simulating water yield with the 

InVEST ecosystem service model for the years 

1989, 2000, and 2014. Additionally, sub-

watersheds were prioritized based on water yield 

per unit area, and a sensitivity analysis was 

conducted to evaluate the impact of climatic 

variables included in the model. The research was 

carried out through the following sequential 

steps. 

 

2.2.1 Model inputs 

2.2.1.1 Precipitation 

Annual precipitation data from stations located 

within and around the study watershed were 

calculated for the three selected years (1989, 

2000, and 2014). Precipitation maps were then 

generated for each year using a precipitation 

gradient approach (Raziei et al., 2014). 

Ultimately, an exponential function was selected 

and applied, considering constraints such as 

spatial distribution patterns, minimum and 

maximum precipitation values (typically 

observed in upstream and downstream areas, 

respectively), and the average annual 

precipitation. 

 

2.2.1.2 Evapotranspiration 

The reference evapotranspiration (ET₀) was 

estimated according to the InVEST model 

guideline using the modified Hargreaves equation 

(Subburayan et al., 2011), expressed as Equation 

2. 

ETO = 0.0023 Ra(Tmax −Tmin)0.653 (
Tmax +Tmin

2

+ 17.8) 
(2) 

In this equation, ET₀ is the reference 

evapotranspiration in millimeters, Rₐ is the 

extraterrestrial radiation in megajoules per square 

meter, and Tₘₐₓ and Tₘᵢₙ are the maximum and 

minimum air temperatures in degrees Celsius 

(Droogers & Allen, 2002). The solar radiation 

(Rₐ) was calculated based on geographic 

coordinates, daily maximum and minimum 

temperatures, and daily relative humidity 

extremes using data from the Gharakhil synoptic 

station, which is the nearest station with the 

required parameters (Allen et al., 1998). The 

mean air temperature for each station was 

computed and spatially interpolated to generate a 

temperature gradient map. The minimum and 

maximum air temperatures used in the model 

were taken from the Sangdeh station, as it is 

located at an elevation close to the average 

elevation of the Talar watershed during the study 

years. 

 

2.2.1.3 Land use 

To prepare land use maps of the research 

watershed for the study years, Landsat TM and 

OLI images were used. Atmospheric correction 

was applied using the FLAASH method in ENVI 

5.3 to remove atmospheric effects (Rozenstein & 

Karnieli, 2011). At least 50 training samples per 

land use class were collected via field surveys and 

analysis of true and false-color composites. 

Training samples for 1989 and 2000 were 

selected from unchanged areas using image 

comparison and Google Earth (Zabihi et al., 

2020). Six land use classes, rainfed agriculture, 
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forest, irrigated agriculture, orchard, rangeland, 

and residential area, were identified. Supervised 

classification was performed using the Support 

Vector Machine (SVM) algorithm with an RBF 

kernel; error factor and gamma parameters were 

set to 250 and 0.167, respectively (Jiang et al., 

2015). Accuracy assessment employed the kappa 

coefficient and overall accuracy by comparing 

ground truth points with classified maps (Yousefi 

et al., 2015). 

 

2.2.1.4 Root-restricting layer depth 

The root-restricting layer depth was considered 

equal to the soil depth in the sampled profiles for 

each land unit, due to the absence of a specific 

restricting layer. This decision was based on 

previous studies conducted in the study area 

(DNRWM, 2001). 

 

2.2.1.5 Plant available water content 

Plant available water content is defined as the 

difference between the volumetric field capacity 

and the permanent wilting point. This value was 

calculated for each land unit within the study 

watershed based on soil texture characteristics 

(Alizadeh, 2015) and according to the data 

provided in the detailed watershed management 

study conducted in the region. 
 
2.2.1.6 Biophysical characteristics 

The biophysical characteristics input into the 

model include root depth, evapotranspiration 

coefficient, and land cover status for each land 

use class, which together represent the vegetation 

and land surface conditions that influence water 

processes. 

- Root depth  

Root depth was determined based on the 

dominant vegetation in the study area provided in 

DNRWM of Mazandaran Province (2001), and 

considering soil depth as a limiting factor for each 

land use type. In some cases, the root depth of 

dominant plant species in different vegetation 

types, according to relevant scientific sources, 

exceeded the actual soil depth; in such instances, 

the soil depth was used as the root depth in the 

model.  

- Evapotranspiration coefficient 

The evapotranspiration coefficient, used to 

estimate potential evapotranspiration in the 

InVEST model, adjusts the reference 

evapotranspiration (based on alfalfa) according to 

the physiological characteristics of different 

vegetation types. This coefficient was applied for 

various land use types based on the 

recommendations of Sharp et al. (2018). 

- Land cover condition 

Land cover condition was defined based on the 

presence (1) or absence (0) of vegetative cover 

for each land use type, and corresponding values 

were assigned accordingly. In this context, all 

land use categories except residential areas were 

identified as having vegetation cover. 

- Seasonality factor 

The seasonality factor (Z parameter) represents 

the variation in precipitation distribution 

throughout the year. In this study, it was set to 10, 

reflecting the climate and rainfall pattern of the 

study area, where most precipitation occurs in 

winter (Lang et al., 2017). 

- Water consumption 

Water consumption represents the portion of 

watershed water yield that is removed from the 

water balance through incorporation into 

products or crops, consumption by humans or 

livestock, or other uses. In this context, 

consumptive water use for rainfed agriculture, 

irrigated agriculture, and orchards was calculated 

based on dominant crop types using the OptiWAT 

software (Dehghan and Galdavi, 2024). For 

residential land use, water use was estimated 

using county-level population data (Statistical 

Center of Iran, 2016) and per capita water 

consumption (Hamdi Ahmadabad et al., 2019) for 

the study years. For all other land use types, 

consumptive water use was considered zero, as 

their water use is accounted for through 

evapotranspiration calculations according to the 

InVEST model user guide (Sharp et al., 2018). A 

table of land use/land cover classes with their 

respective consumptive water use values is 

provided. 

 

2.2.1.7 Sub-watersheds delineation 

The Talar watershed boundary was delineated 

using ArcGIS 10.8.1 software with the ArcHydro 

extension, based on a digital elevation model and 

the geographic location of the Shirgah 

hydrometric station (as the watershed outlet). In 

the next step, considering the hydrological 

conditions and using the 1:25,000 topographic 
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map of the study area along with AutoCAD 2007 

software, ten independent hydrological sub-

watersheds and one internal zone were identified 

to model the hydrological service of water yield. 

These sub-watersheds are presented in Figure 3. 

 
Figure 3. Delineated sub-watersheds in the Talar Watershed 

 
2.3 Sensitivity analysis of model input 

parameters 

To identify and distinguish the contribution and 

sensitivity of input factors influencing water yield 

in the InVEST ecosystem service model, the year 

2014 was selected as the baseline. Subsequently, 

by altering only one factor at a time during each 

model run, replacing it with the corresponding 

input from 1989, the impact of that specific factor 

on changes in the watershed’s hydrological 

services over the 25-year study period was 

assessed. Sensitivity analysis of the input 

parameters in the used model was conducted 

using the One-At-a-Time (OAT) approach 

(Sánchez-Canales et al., 2012; Yang et al., 2019), 

and the relative sensitivity index was calculated 

based on Equation 3 following the methodology 

of Kumar et al. (2004) and Mostafazadeh et al. 

(2018). 

(3) Sr =
O2 − O1

P2 − P1
(

𝑃

𝑂
) 

In this equation, Sr represents the relative 

sensitivity index (the rate of change in the output 

per unit change in the input factor), O is the 

average of the model output values (O₁ and O₂), 

and P is the average of the model input values (P₁ 

and P₂). It is worth noting that, based on the 

nature of the model inputs used in this study, only 

the variables that changed over the statistical 

period (1989–2014) were considered for 

sensitivity analysis and contribution assessment. 

These variables in the water yield model include 

precipitation, reference evapotranspiration, and 

the seasonality parameter. Land use was also 

considered in the contribution analysis; however, 

due to its qualitative nature and spatial 

heterogeneity, it was not feasible to evaluate the 

model’s sensitivity to changes in land use. 
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2.4 Prioritizing Sub-watersheds by specific 

water yield 

Prioritizing sub-watersheds in terms of water 

yield is crucial for effective water resource 

management. It enables the identification of key 

areas contributing significantly to runoff and 

water yield. This prioritization supports more 

targeted decision-making for land use planning, 

conservation, and vegetation restoration. In this 

study, specific water yield was used for sub-

watershed prioritization in the Talar watershed, as 

it allows for effective comparison between sub-

watersheds. Specific water yield refers to the 

amount of water yield per unit area. 

 

 

3. Results and Discussion 

3.1 Model Inputs 

In line with the modeling of ecosystem services 

and the sensitivity analysis of input factors in the 

water yield model, Table 1, Figure 4, and Figure 

5 present key climatic characteristics of the Talar 

watershed. Specifically, Table 1 illustrates the 

relationship between elevation, precipitation, and 

temperature during the study period. Figure 4 

displays the spatial distribution of annual 

precipitation, while Figure 5 highlights the spatial 

variation of mean annual temperature. These data 

provide essential inputs for understanding 

hydrological dynamics and evaluating the 

response of the water yield model to climatic 

variations.

 
Table 1. Analysis of the relationship between elevation, precipitation, and temperature in the Talar Watershed during 

the study period 

Variable Year R² p-value Relationship 

Precipitation 

1989 0.861 0.084 P = 854.97 * e-0.00023H 

2000 0.605 0.038 P = 818.94 * e-0.00028H 

2014 0.646 0.029 P = 852.40 * e-0.00031H 

Temperature 

1989 0.748 0.026 T = 18.494 * e-0.00064H 

2000 0.821 0.002 T = 17.547 * e-0.00024H 

2014 0.899 0.000 T = 18.03 * e-0.00027H 
Note: H represents elevation (in meters) and P is precipitation (in mm), and T is temperature (in °C). 

 

Based on the results presented in Table 1, 

precipitation decreased exponentially with 

increasing elevation across all study years (1989, 

2000, and 2014). In 1989, this relationship 

showed a relatively high coefficient of 

determination (R² = 0.861), though it was not 

statistically significant (p = 0.084). In 2000 and 

2014, the relationship was statistically significant 

with moderate determination coefficients (R² = 

0.605 and R² = 0.646, respectively; p < 0.05). Air 

temperature also decreased exponentially with 

elevation in all years, showing an inverse 

relationship. This relationship was statistically 

significant in each year, with the coefficient of 

determination increasing from 0.748 in 1989 to 

0.899 in 2014, indicating a strengthening 

correlation between elevation and temperature 

over the study period. 
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Figure 4. Spatial distribution of annual precipitation in the Talar Watershed during the study years 

 

Overall, the spatial variation of rainfall in the 

Talar watershed (Figure 4) indicates that the 

highest precipitation occurred in the northern and 

northeastern parts, with amounts gradually 

decreasing towards the central and southern 

areas, signifying lower rainfall in these regions. 

This spatial pattern reflects the influence of 

elevation and geographical features on rainfall 

distribution and precipitation type, resulting in 

higher rainfall across the elevated northern zones 

and lower rainfall in the low-lying southern areas. 

Concurrently, the average annual rainfall for the 

years 1989, 2000, and 2014 was 552.6 mm, 479.8 

mm, and 472.8 mm respectively, demonstrating a 

declining trend over the study period. 
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Figure 5. Mean annual temperature variations across the Talar Watershed during the study period 

 

Based on Figure 5, in the Talar watershed, spatial 

temperature variations are primarily controlled 

by topography, with the northern highlands 

exhibiting lower temperatures (around 5.95°C in 

2014) and the lower-lying central and southern 

areas experiencing higher temperatures (up to 

17°C in 2014). The north-to-south thermal 

gradient reveals a decrease of approximately 11° 

C, demonstrating the significant influence of 

elevation differences on the regional 

microclimate. This pattern unequivocally 

confirms the inverse relationship between 

elevation and temperature: as altitude increases, 

temperatures decrease markedly. The mean 

annual temperatures in the Talar watershed of 

Mazandaran Province for the study years 1989, 

2000, and 2014 were 8.92°C, 11.07°C, and 

10.6°C, respectively. This suggests a general 

warming trend that corresponds with observed 

reductions in precipitation over the same period. 
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Figure 6. Annual evapotranspiration patterns in the Talar Watershed over the study period 

 

As shown in Figure 4, the reference 

evapotranspiration (ET₀) in 2014 in the Talar 

watershed exhibited a clear spatial pattern of 

decrease from the lowland northern areas toward 

the elevated southern regions. This pattern is 

mainly influenced by lower temperatures and the 

type of vegetation cover in the higher southern 

areas. The annual average ET₀ for the years 1989, 

2000, and 2014 was 812.1 mm, 1083.0 mm, and 

1035.0 mm, respectively. 

The land use maps of the Talar watershed for the 

study years are presented in Figure 7, and the 

Plant Available Water Content (PAWC) based on 

land units is shown in Figure 8. 
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Figure 7. Land use maps of the study area for the research years 

 

The results of land use classification accuracy for 

the years 1989, 2000, and 2014 indicate an 

overall improvement in accuracy and the Kappa 

coefficient over the study period. The average 

overall accuracy increased from approximately 

79.51% in 1989 to 85.52% in 2014, reflecting 

enhanced classification precision. Forest and 

rainfed agriculture classes consistently showed 

the highest users’ and producers’ accuracies, 

while orchard and residential areas exhibited 

lower accuracy compared to other classes. 

Additionally, the reduction in omission and 

commission errors over the years confirms the 

improvement in classification quality. These 

findings demonstrate that the classification 

process has become more reliable and precise 

over time. 
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Figure 8. Geographic distribution of Plant Available Water Content (PAWC) in the study area 

 

Plant Available Water Content (PAWC) in the 

Talar watershed, as shown in Figure 8, ranges 

from 0.01 to 0.57, reflecting significant 

variability in the region’s soil physical properties. 

The lowest PAWC values (0.01 to 0.1) are mainly 

found in the southern areas with steep slopes, 

shallow and rocky soils, and are often associated 

with rangeland cover. In contrast, the highest 

values (0.4 to 0.57) occur in the northern regions, 

where deep clay-loam soils and forest cover 

dominate, indicating high water retention 

capacity. This spatial pattern is directly 

influenced by the watershed’s lithological and 

geomorphological conditions. 
 

Table 2. Biophysical characteristics and water consumption of land uses in the Talar watershed over the study years 

Land Use Type 
Vegetation 

Cover 

Evapotranspiration 

Coefficient 

Root Depth (Cm) Water Consumption (M3) 

1989 2000 2014 1989 2000 2014 

Rainfed Farming Yes 0.65 35.00 35.00 35.00 1,657,710 4,291,790 7,463,770 

Forest Yes 1.00 105.50 106.90 107.70 – – – 

Irrigated Farming Yes 0.65 30.00 30.00 30.00 11,924,419 15,892,762 17,385,739 

Orchard Yes 0.70 94.30 89.60 97.70 2,813,380 3,455,600 5,597,420 

Rangeland Yes 0.65 40.00 40.00 40.00 – – – 

Residential Area No 0.30 0.00 0.00 0.00 6,392,355 7,750,942 7,932,680 

 

Based on the findings presented in Table 2, the 

Talar watershed shows that all land uses, 

including rainfed farming, forest, irrigated 

farming, orchard, and rangeland, have vegetation 

cover, whereas residential areas do not. The 

evapotranspiration coefficient is highest for 

forests (1.00) and lowest for residential areas 

(0.30). Root depth is greater in forests and 

orchards compared to other land uses, indicating 

a need for deeper water sources. Water 

consumption in irrigated farming is the highest, 

increasing from about 11.9 million cubic meters 

(MCM) in 1989 to 17.4 MCM in 2014. Water use 

in rainfed farming and orchards has also 

significantly increased, from 1.6 million to 7.5 

million and from 2.8 to 5.6 MCM, respectively. 

Residential water consumption has risen from 6.4 

to 7.9 MCM over the same period. Water 

consumption for forests and rangelands is not 

reported, likely due to the absence of irrigation. 
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These data indicate growing water demand in 

agricultural and urban land uses, leading to 

increasing pressure on the watershed’s water 

resources. 

 

3.2 Sub-watershed prioritization based on 

specific water yield 

Based on the results of water yield simulation 

using the InVEST ecosystem service model and 

the conducted assessments of the spatial 

distribution of annual water yield in the Talar 

watershed, it can be stated that the sub-

watersheds located in the southern and eastern 

parts of the study area have the lowest water 

yield. Correspondingly, moving from south to 

north and from east to west, the annual water 

yield increases. The highest annual water yield 

was calculated in the internal zone and Alasht 

sub-watersheds, with values of 68.5 and 27.1 

MCM per year, respectively. The large area and 

higher precipitation due to the geographical 

location of these sub-watersheds can be 

considered as reasons for their high water yield. 

The lowest annual water yield was estimated in 

the Nizva sub-watershed with 3 MCM per year. It 

is noteworthy that the spatial variation of water 

yield is influenced by the distribution of 

precipitation, which is the most important factor 

in modeling the hydrological service of water 

yield (Terrado et al., 2014; Belete et al., 2020), 

evapotranspiration (Fu et al., 2017), as well as 

soil depth in the Talar watershed. 

 

 

 
Figure 9. Ranking of sub-watersheds according to specific water yield 

 

Prioritizing sub-watersheds based on water yield, 

as one of the hydrological ecosystem services, is 

essential for developing management strategies 

and implementing conservation measures. To 

identify critical sub-watersheds (those with the 

lowest water yield), and based on the findings 

shown in Figure 9, the Felurd and Nizva sub-

watersheds have the lowest specific water yield 

in the Talar watershed, with values of 533.8 and 

610 m3ha‒1year‒1, respectively. Regarding the 

Felurd sub-watershed, although its annual 

precipitation is 530 mm, water loss due to 

evapotranspiration (477 mm) is high because of 

the dominant forest land use and high infiltration 
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caused by deep soil (1015 mm). The high ratio of 

evapotranspiration (335 mm) to precipitation 

(382 mm) in the Nizva sub-watershed also leads 

to significant water loss, making it critical in 

terms of specific water yield. The Arim sub-

watershed ranks as the highest in specific water 

yield, with 1504 m3/ha, and is considered the least 

critical regarding water yield conditions in the 

study area. This is attributed to its higher 

precipitation and dominant rangeland land use, 

which results in lower evapotranspiration. 

Additionally, the lowest average soil depth (306 

mm) and the highest average slope (57.2%) in the 

Arim sub-watershed contribute to its maximum 

specific water yield. The internal zone, as the 

largest sub-watershed with an area of 

approximately 640 square kilometers, has a 

specific water yield of 1088 m3ha‒1year‒1. 

3.3 Quantifying the Contribution of Input 

Factors to Water Yield 

Quantifying the contribution of input factors to 

water yield plays a crucial role in understanding 

and managing water resources. This process helps 

identify the key factors affecting watershed water 

output and enables optimal planning for 

sustainable conservation and utilization of water 

resources. Additionally, by recognizing the 

potential changes in each factor, it becomes 

possible to better predict the impacts of climate 

change and land use alterations.  The contribution 

of changes in input factors to variations in water 

yield between 1989 and 2014 in the Talar 

watershed is presented in Table 3. 
 

 

Table 3. Contribution of Input Factor Changes to Variations in Water Yield (1989-2014) in the Talar Watershed 

Variable 
Estimated Value (m³) 

Change (%) 
Before Change After Change 

Precipitation 1,478,516,480 1,225,222,500 52.33 

Reference Crop Evapotranspiration - 1,881,256,850 27.23 

Land use - 1,394,278,030 -5.69 

Seasonal Factor - 726,737,990 -50.84 

 
According to the results of the analysis of input 

factor impacts on the InVEST water yield model 

(Table 3), precipitation had the greatest influence 

on the hydrological service in the Talar 

watershed, accounting for a 52.33% change in 

water yield over the 25-year study period (1989-

2014). This finding aligns with reports by 

Boithias et al. (2014), Terrado et al. (2014), and 

Lian et al. (2020), which emphasize the critical 

role of precipitation in modeling water yield 

using the InVEST ecosystem services model. 

Furthermore, the findings indicate that other 

climatic variables, such as the seasonal factor and 

evapotranspiration, had a greater impact on water 

yield than land use in the Talar watershed. Land 

use, as one of the model's inputs, influences water 

yield through alterations in the hydrological 

cycle, particularly evapotranspiration and 

infiltration. In this regard, land use changes in the 

Talar watershed during the 25 years led to only a 

5.7% increase in water yield, showing a relatively 

minor impact compared to climatic variables. 

Joorabian Shooshtari et al. (2018) also reported a 

greater influence of climatic factors over land use 

in simulating river discharge using the SWAT 

model in the Nekarood watershed, Mazandaran 

Province. Similarly, Belete et al. (2020) found a 

6% effect of land use on water yield over 14 years 

(2003-2017) using the InVEST model, consistent 

with the present study. Yang et al. (2019) in China 

also highlighted the limited role of land use in 

water yield estimation using InVEST and noted 

that this minimal influence might hinder accurate 

evaluation of land use change impacts on 

hydrological service performance. Based on the 

current findings, the seasonal factor and 

evapotranspiration contributed to 50.8% and 

27.2% of the changes in water yield in the Talar 

watershed between 1989 and 2014. The strong 

impact of the seasonal factor may be attributed to 

its relationship with precipitation, which plays a 

dominant role in water yield modeling in this 

watershed 

 

3.4 Sensitivity analysis of model inputs 

Sensitivity analysis of model inputs is essential 

for identifying which factors most influence 

model outcomes, improving model reliability, 



 116 . Zabihi et al., Water and Soil Management and Modeling, Vol 5, Special Issue, Pages 101-120, 2025 

and guiding effective resource management 

decisions. The sensitivity analysis of the water 

yield model to variations in input factors in the 

Talar watershed is presented in Table 4. 
 

 

Table 4. Sensitivity Analysis of Water Yield Model to Input Factor Variations in the Talar Watershed 

Variable Factor Change Amount (%) Relative Sensitivity Coefficient 

Precipitation 
+14.44 0.407 

-14.44 -0.454 

Reference Evapotranspiration 
+27.33 -0.222 

-27.33 0.372 

Seasonality Factor 
+14.44 -0.061 

-14.44 0.053 

According to the results of the sensitivity analysis 

of the water yield model presented in Table 4, 

precipitation, with a relative sensitivity 

coefficient of approximately 0.42, was identified 

as the most sensitive factor in the hydrological 

water yield service model in the Talar watershed. 

The sensitivity coefficients indicate the direction 

and magnitude of the water yield response to 

increases or decreases in each input. This finding 

aligns with and confirms the results of Sánchez 

Canales et al. (2012), Marquès et al. (2013), and 

Hamel and Guswa (2015). Furthermore, Yang et 

al. (2019) in southern China also highlighted 

precipitation as the most sensitive factor in 

estimating water yield using the InVEST model, 

reporting a 138% increase in water yield with a 

46% increase in precipitation. Correspondingly, a 

14% decrease and an increase in precipitation 

resulted in a 43.5% decrease and 56.8% increase 

in water yield in the Talar watershed. 

Evapotranspiration and the seasonality factor 

ranked next in sensitivity, with relative sensitivity 

coefficients of 0.29 and 0.057, respectively, in the 

InVEST water yield model. It should be noted 

that, according to Redhead et al. (2016), the 

sensitivity of the water yield model to changes in 

precipitation and evapotranspiration depends on 

the specific watershed studied. Despite possible 

uncertainties associated with the seasonality 

parameter due to its wide numerical range, which 

may cause uncertainty in water yield estimates, 

the relatively low sensitivity of the model to 

seasonality compared to other variables is another 

result of this study, consistent with findings by 

Sánchez Canales et al. (2012) in Spain and Hamel 

and Guswa (2015) in the United States. It is 

important to note that the model’s sensitivity to 

the seasonality parameter may vary in each 

watershed depending on the amount and temporal 

distribution of precipitation. Therefore, the 

influence of seasonality on water yield is 

moderated by the availability of water content 

and precipitation amount, both of which exhibit 

spatial variability. Accordingly, the seasonality 

parameter can account for local precipitation 

characteristics as reflected in the model used 

(Yang et al., 2019). Overall, this sensitivity 

analysis emphasizes the dominant role of 

precipitation in water yield fluctuations, the 

important but opposite effect of 

evapotranspiration, and the relatively minor 

influence of seasonal changes. These insights are 

critical for effective water resource management 

and climate impact assessments. 
 

4. Conclusions 

This study assessed the sensitivity of key climatic 

factors, precipitation, reference 

evapotranspiration, and seasonality index, on 

water yield modeling in the Talar watershed using 

the InVEST model and a 25-year data series. 

Sensitivity analysis revealed that precipitation 

had the strongest influence on model outputs, 

followed by evapotranspiration and seasonality, 

underscoring the dominant role of climate in 

shaping water yield dynamics. In contrast, land 

use change accounted for only about 6% of the 

variation in water yield over the study period, 

suggesting a relatively limited impact compared 

to climatic drivers. Spatial analysis identified the 

northern and northeastern sub-watersheds as 

high-yield zones, while Felurd and Nizva 
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emerged as critical low-yield areas due to high 

evapotranspiration and deep soils. Prioritizing 

sub-watersheds based on their water yield 

potential provides a practical framework for 

ecosystem-based resource management, 

including targeted conservation, vegetation 

restoration, and sustainable land use planning. 

Although the InVEST model simplifies 

hydrological processes, its accessibility and 

ecosystem service perspective make it suitable 

for other mountainous regions with similar 

climates. Future research should integrate RCP 

climate scenarios and process-based models such 

as SWAT or WEAP to improve the understanding 

of water resource dynamics under land use and 

climate change. 
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