ارزیابی منابع آب سطحی قابل دسترس در حوضۀ مرزی قره‌تیکان با استفاده از محصولات ماهواره‌ای و GIS

نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد/ دانشکدۀ مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار/ گروه نقشه‌برداری، دانشکدۀ مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار/ گروه مهندسی آب و محیط زیست، دانشکدۀ مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

4 دانشیار/ گروه مهندسی آب و محیط زیست، دانشکدۀ مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران (پژوهشگر ارشد پسادکتری/ دانشکدۀ جغرافیا، دانشگاه مینوث، ایرلند)

چکیده

با رشد روزافزون جمعیت، تغییرات اقلیمی و افزایش فعالیت‌های صنعتی، استفادة بهینه از آب‌های مرزی جهت تأمین نیازهای جوامع، امری ضروری به‌نظر می‌رسد. شناسایی و ارزیابی منابع آب قابل دسترس و برنامه‌ریزی مناسب جهت برداشت از این منابع ارزشمند، می‌تواند منجر به بهبود شرایط حوزه آبخیز و آبخیزنشینان شود. شناسایی منابع تأمین و مصارف آب به‌عنوان اولین گام مدیریت منابع آب حوضه در اولویت است. عدم وجود اطلاعات با توزیع زمانی و مکانی مناسب در مناطق مرزی به‌دلایل مختلف از قبیل صعب‌العبور بودن یا مسائل امنیتی و یا عدم وجود ایستگاه‌های کافی مشاهدات زمینی، اجرای این گام را دچار چالش می‌کند. علم سنجش‌ از دور به همراه تکنیک‌های موجود در سامانه اطلاعات جغرافیایی، امکان پایش و ارزیابی منابع آب این حوضه‌های آبریز را فراهم آورده است. در تحقیق حاضر، حوضۀ رودخانۀ قره‌تیکان و به‌طور خاص زیرحوضۀ روستای قره‌تیکان که در شمال شرق ایران و در همسایگی کشور ترکمنستان به‌عنوان یک حوضۀ فاقد آمار مورد بررسی قرار گرفته است. برای شناسایی و ارزیابی حوضه از محصولات بارش ماهواره‌ای IMERG-Final، دمای بازتحلیل ERA5-Land و تبخیر و تعرق GLEAM استفاده شد. نتایج ارزیابی در طول دورة آماری ابتدای سال آبی 85-1384 تا انتهای سال آبی 93-1392 نشان داد محصول دمای بازتحلیل شده دقت بالایی در تخمین دما داشته و محصول بارش ماهواره‌ای نیز همبستگی بالایی با داده‌های بارش دارد. لذا ترکیب محصولات ماهواره‌ای به‌همراه داده‌های ایستگاه‌های زمینی منجر به تخمین مناسب رواناب در حوضه‌های فاقد آمار و ایستگاه هیدرومتری می‌شود. در ادامه، دیگر اجزای بیلان آب حوضه شامل رواناب ورودی و نیاز محیط زیستی پایین‌دست با استفاده از روش‌های جاستین و لیون محاسبه شده و در نهایت مقدار آب قابل دسترس در ماه‌های مختلف مشخص شد. بر این اساس مشخص شد که امکان ذخیره حدود 11.8 میلیون مترمکعب در سال جهت تأمین نیاز و توسعه کشاورزی منطقه وجود دارد.

کلیدواژه‌ها


پوراصغر سنگاچین، ف. (1380). بررسی چالش‌های منابع آب کشور. نشریۀ برنامه و بودجه، 6(7 و 8)، 85-122.
خزایی، س.، رایینی، م.، داوری، ک.، و شفیعی، م. (1397). معرفی چارچوب حسابداری آب WA+. آب و توسعۀ پایدار، 5(2)، 117-128.
عباسی، ل. (1395). تعیین پارامترهای بیلان منابع آب محدودۀ مطالعاتی باغ‌ملک در استان خوزستان. دومین کنگرۀ ملی آبیاری و زهکشی ایران، دانشگاه صنعتی اصفهان.
قریشی قره‌تکان، س.ک.، و قره‌چلو، س. (1397). بررسی وضعیت آب‌های سطحی خروجی از مرزهای ایران در منطقۀ کلات نادری با استفاده از GIS. هفتمین کنفرانس ملی مدیریت منابع آب ایران، دانشگاه یزد.
مطیعی لنگرودی، س.ح.، ولایتی، س.، و اکبراقلی، ف. (1387). بررسی وضعیت منابع آب منطقۀ کلات با تأکید بر مشکلات تأمین آب روستایی. پژوهش‌های جغرافیایی، 40(63)، 1-14.
 
Abbasi, L. (2016). Determining the parameters of water resources balance in Baghmalek study area in Khuzestan Province. The Second National Congress of Irrigation and Drainage of Iran, Isfahan, Iran (in Persian).
Alessa, L., Kliskey, A., Lammers, R., Arp, C., White, D., Hinzman, L., & Busey, R. (2008). The arctic water resource vulnerability index: an integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environmental Management, 42, 523.
Athari, Z., Pezeshki Rad, G., Abbasi, E., Alibaygi, A., & Westholm, E. (2017). Designing a model for integrated watershed management in Iran. Water Policy, 19(6), 1143–1159.
Babel, M., Gupta, A.D., & Nayak, D. (2005). A model for optimal allocation of water to competing demands. Water Resources Management, 19(6), 693-712.
Backeberg, G.R. (2005). Water institutional reforms in South Africa. Water policy, 7(1), 107-123.
Ghoreishi Gharetekan, S.K., & Gharechelou, S. (2018). Investigation of surface water discharge from Iran's borders in Kalat Naderi region using GIS. 7th Iranian National Water Resources Management Conference, Yazd, Iran (in Persian).
Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J., & Tan, J. (2019). GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC).
Khazaei, S., Raeini Sarjaz, M., Davari, K., & Shafiei, M. (2019). Introducing the water accounting plus (WA+) framework. Journal of Water and Sustainable Development, 5(2), 117-128 (in Persian).
Khudhair, M.A., Sayl, K.N., & Darama, Y. (2020). Locating site selection for rainwater harvesting structure using remote sensing and GIS. IOP Conference Series: Materials Science and Engineering. 881(1), 012170.
Kumar, D.N. & Reshmidevi, T. (2013). Remote sensing applications in water resources. Journal of the Indian Institute of Science, 93(2), 163-188.
Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4(4), 315-328.
Magesh, N.S., Chandrasekar, N., & Soundranayagam, J.P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64(2), 373-381.
Mianabadi, H. (2013). Political, security and legal considerations in the management of border rivers. Intrnational Relation Research, 3(9),  203-233.
Motiee Langroudi, S.H., Velayati, S., & Akbaroghli, F. (2008). Investigating the situation of water resources in Kalat region with emphasis on rural water supply problems.  Geographical Research Quarterly, 40(63), 1-14 (in Persian).
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349-4383.
Poorasghar Sanghachin, F. (2001). Investigating the challenges of water resources management in the country. The Journal of Planning and Budgeting, 6(7-8), 85-122 (in Persian).
Ratha, D., & Agrawal, V.P. (2015). A digraph permanent approach to evaluation and analysis of integrated watershed management system. Journal of Hydrology, 525, 188-196.
Schultz, G.A. (1997). Use of remote sensing data in a GIS environment for water resources management. Pp. 3-15, In: Baungartner M, Schultz G A and Johnson A I (eds), Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems, IAHS Publications, Walingford, Oxfordshire, UK.
Sharma, S.K. (2019). Role of remote sensing and GIS in integrated water resources management (IWRM). Pp. 211-227, In: Ray S. (eds), Ground Water Development-Issues and Sustainable Solutions, Springer, Singapore.
Sheffield, J., Wood, E.F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., & Verbist, K. (2018). Satellite remote sensing for water resources management: Potential for supporting sustainable development in data‐poor regions. Water Resources Research, 54(12), 9724-9758.
Shiklomanov, I.A. (2000). Appraisal and assessment of world water resources. Water International, 25(1), 11-32.
Singh, A. (2016). Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview. Agricultural Water Management, 174, 2-10.
Wang, G., Mang, S., Cai, H., Liu, S., Zhang, Z., Wang, L., & Innes, J.L. (2016). Integrated watershed management: evolution, development and emerging trends. Journal of Forestry Research, 27, 967–994.
Yousaf, W., Awan, W.K, Kamran, M., Ahmad, S.R., Bodla, H.U., Riaz, M., Umar, M., & Chohan, K. (2021). A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan. Agricultural Water Management, 243, 106443.